Mwanza, D., Engeström, Y.: Pedagogical Adeptness in the Design of E-Learning Environments: Experiences from the Lab@ Future project. In: E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, pp. 1344–1347. AACE (2003)
Google Scholar
Leow, F.T., Neo, M.: Interactive multimedia learning: innovating classroom education in a Malaysian University. Turkish Online J. Educ. Technol.-TOJET 13(2), 99–110 (2014)
Google Scholar
Papatheocharous, E., Belk, M., Germanakos, P., Samaras, G.: Towards implicit user modeling based on artificial intelligence, cognitive styles and web interaction data. Int. J. Artif. Intell. Tools 23(02), 1440009 (2014)
CrossRef
Google Scholar
Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_1
CrossRef
Google Scholar
Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)
CrossRef
Google Scholar
Mobasher, B.: Data mining for web personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 90–135. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_3
CrossRef
Google Scholar
Pierrakos, D., Paliouras, G., Papatheodorou, C., Spyropoulos, C.D.: Web usage mining as a tool for personalization: a survey. User Model. User-Adap. Inter. 13(4), 311–372 (2003)
CrossRef
Google Scholar
Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Trans. Internet Technol. (TOIT) 3(1), 1–27 (2003)
CrossRef
Google Scholar
Pérez-Acebo, H., Linares-Unamunzaga, A., Abejón, R., Rojí, E.: Research trends in pavement management during the first years of the 21st century: a bibliometric analysis during the 2000–2013 period. Appl. Sci. 8(7), 1041 (2018)
CrossRef
Google Scholar
Song, Y., Chen, X., Hao, T., Liu, Z., Lan, Z.: Exploring two decades of research on classroom dialogue by using bibliometric analysis. Comput. Educ. 137, 12–31 (2019)
CrossRef
Google Scholar
Chen, X., Wang, S., Tang, Y., Hao, T.: A bibliometric analysis of event detection in social media. Online Inf. Rev. 43(1), 29–52 (2019)
CrossRef
Google Scholar
Hao, T., Chen, X., Li, G., Yan, J.: A bibliometric analysis of text mining in medical research. Soft. Comput. 22(23), 7875–7892 (2018)
CrossRef
Google Scholar
Chen, X., Liu, Z., Wei, L., Yan, J., Hao, T., Ding, R.: A comparative quantitative study of utilizing artificial intelligence on electronic health records in the USA and China during 2008–2017. BMC Med. Inform. Decis. Mak. 18(5), 117 (2018)
CrossRef
Google Scholar
Chen, X., Lun, Y., Yan, J., Hao, T., Weng, H.: Discovering thematic change and evolution of utilizing social media for healthcare research. BMC Med. Inform. Decis. Mak. 19(2), 50 (2019)
CrossRef
Google Scholar
Chen, X., Ding, R., Xu, K., Wang, S., Hao, T., Zhou, Y.: A bibliometric review of natural language processing empowered mobile computing. Wireless Communications and Mobile Computing, 2018 (2018)
Google Scholar
Chen, X., Xie, H., Wang, F.L., Liu, Z., Xu, J., Hao, T.: A bibliometric analysis of natural language processing in medical research. BMC Med. Inform. Decis. Mak. 18(1), 14 (2018)
CrossRef
Google Scholar
Chen, X., Hao, J., Chen, J., Hua, S., Hao, T.: A bibliometric analysis of the research status of the technology enhanced language learning. In: Hao, T., Chen, W., Xie, H., Nadee, W., Lau, R. (eds.) SETE 2018. LNCS, vol. 11284, pp. 169–179. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03580-8_18
CrossRef
Google Scholar
Chen, X., Weng, H., Hao, T.: A data-driven approach for discovering the recent research status of diabetes in China. In: Siuly, S., et al. (eds.) HIS 2017. LNCS, vol. 10594, pp. 89–101. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69182-4_10
CrossRef
Google Scholar
Chen, X., Chen, B., Zhang, C., Hao, T.: discovering the recent research in natural language processing field based on a statistical approach. In: Huang, T.-C., Lau, R., Huang, Y.-M., Spaniol, M., Yuen, C.-H. (eds.) SETE 2017. LNCS, vol. 10676, pp. 507–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71084-6_60
CrossRef
Google Scholar
Hassan, S.U., Haddawy, P., Zhu, J.: A bibliometric study of the world’s research activity in sustainable development and its sub-areas using scientific literature. Scientometrics 99(2), 549–579 (2014)
CrossRef
Google Scholar
Zawacki-Richter, O., Latchem, C.: Exploring four decades of research in computers & education. Comput. Educ. 122, 136–152 (2018)
CrossRef
Google Scholar
Zhong, S., Geng, Y., Liu, W., Gao, C., Chen, W.: A bibliometric review on natural resource accounting during 1995–2014. J. Cleaner Prod. 139, 122–132 (2016)
CrossRef
Google Scholar
Gimenez, E., Salinas, M., Manzano-Agugliaro, F.: Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability 10(2), 391 (2018)
CrossRef
Google Scholar
Hirsch, J.E., Buela-Casal, G.: The meaning of the H-Index. Int. J. Clin. Health Psychol. 14(2), 161–164 (2014)
CrossRef
Google Scholar
Mann, H.B.: Nonparametric tests against trend. Econometrica J. Econometric Soc. 13(3), 245–259 (1945)
MathSciNet
CrossRef
Google Scholar