Allahyari, M., et al.: Text summarization techniques: a brief survey. arXiv preprint arXiv:1707.02268 (2017)
Alvanaki, F., Michel, S., Ramamritham, K., Weikum, G.: See what’s enblogue: real-time emergent topic identification in social media. In: Proceedings of 15th International Conference on Extending Database Technology, EDBT 2012, Berlin, Germany, 27–30 March 2012, pp. 336–347 (2012)
Google Scholar
Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012). https://doi.org/10.1145/2133806.2133826
CrossRef
Google Scholar
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(1), 993–1022 (2003)
MATH
Google Scholar
Bonnel, W.: Improving feedback to students in online courses. Nurs. Educ. Perspect. 29(5), 290–294 (2008)
Google Scholar
Cataldi, M., Caro, L.D., Schifanella, C.: Emerging topic detection on twitter based on temporal and social terms evaluation. In: Proceedings of the Tenth International Workshop on Multimedia Data Mining, pp. 4:1–4:10 (2010)
Google Scholar
Chathuranga, J., Ediriweera, S., Hasantha, R., Munasinghe, P., Ranathunga, S.: Annotating opinions and opinion targets in student course feedback. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018) (2018)
Google Scholar
Cohen, R., Ruths, D.: Classifying political orientation on twitter: it’s not easy!. In: Proceedings of the 7th International Conference on Weblogs and Social Media, ICWSM 2013, pp. 91–99, January 2013
Google Scholar
Cristani, M., Perina, A., Castellani, U., Murino, V.: Geo-located image analysis using latent representations. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2008
Google Scholar
Eisenstein, J., O’Connor, B., Smith, N.A., Xing, E.P.: A latent variable model for geographic lexical variation. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 1277–1287. EMNLP 2010. Association for Computational Linguistics, Stroudsburg (2010). http://dl.acm.org/citation.cfm?id=1870658.1870782
Fan, X., Luo, W., Menekse, M., Litman, D., Wang, J.: Coursemirror: enhancing large classroom instructor-student interactions via mobile interfaces and natural language processing. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1473–1478. ACM (2015)
Google Scholar
Fang, Y., Si, L., Somasundaram, N., Yu, Z.: Mining contrastive opinions on political texts using cross-perspective topic model. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 63–72. WSDM 2012. ACM, New York (2012). http://doi.acm.org/10.1145/2124295.2124306
García-Hernández, R.A., Montiel, R., Ledeneva, Y., Rendón, E., Gelbukh, A., Cruz, R.: Text summarization by sentence extraction using unsupervised learning. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 133–143. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88636-5_12
CrossRef
Google Scholar
Goorha, S., Ungar, L.H.: Discovery of significant emerging trends. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010, pp. 57–64 (2010)
Google Scholar
Hasan, K.S., Ng, V.: Automatic keyphrase extraction: a survey of the state of the art. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 1: Long Papers. pp. 1262–1273 (2014)
Google Scholar
Hong, L., Davison, B.D.: Empirical study of topic modeling in Twitter. In: Proceedings of the First Workshop on Social Media Analytics. SOMA 2010, pp. 80–88. ACM, New York (2010). http://doi.acm.org/10.1145/1964858.1964870
Paul, M.J., Dredze, M.: You are what your tweet: analyzing twitter for public health. Artif. Intell. 38, 265–272 (2011)
Google Scholar
Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., Baldi, P.: Mining concepts from code with probabilistic topic models. In: Proceedings of the Twenty-second IEEE/ACM International Conference on Automated Software Engineering. ASE 2007, pp. 461–464. ACM, New York (2007). http://doi.acm.org/10.1145/1321631.1321709
Lumpkin, A., Achen, R.M., Dodd, R.K.: Student perceptions of active learning. Coll. Stud. J. 49(1), 121–133 (2015)
Google Scholar
Luo, W., Fan, X., Menekse, M., Wang, J., Litman, D.: Enhancing instructor-student and student-student interactions with mobile interfaces and summarization. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pp. 16–20 (2015)
Google Scholar
Luo, W., Litman, D.: Summarizing student responses to reflection prompts. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1955–1960 (2015)
Google Scholar
Luo, W., Liu, F., Litman, D.: An improved phrase-based approach to annotating and summarizing student course responses. arXiv preprint arXiv:1805.10396 (2018)
Luo, W., Liu, F., Liu, Z., Litman, D.: Automatic summarization of student course feedback. arXiv preprint arXiv:1805.10395 (2018)
Martins, A.F., Smith, N.A.: Summarization with a joint model for sentence extraction and compression. In: Proceedings of the Workshop on Integer Linear Programming for Natural Language Processing, pp. 1–9. Association for Computational Linguistics (2009)
Google Scholar
Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter stream. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, 6–10 June 2010, pp. 1155–1158 (2010)
Google Scholar
Mehrotra, R., Sanner, S., Buntine, W., Xie, L.: Improving LDA topic models for microblogs via tweet pooling and automatic labeling. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 889–892. ACM (2013)
Google Scholar
Ramage, D., Dumais, S., Liebling, D.: Characterizing microblogs with topic models. In: Fourth International AAAI Conference on Weblogs and Social Media (2010)
Google Scholar
Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685 (2015)
Schinas, M., Papadopoulos, S., Kompatsiaris, Y., Mitkas, P.A.: Visual event summarization on social media using topic modelling and graph-based ranking algorithms. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 203–210. ACM (2015)
Google Scholar
Shapiro, H.B., Lee, C.H., Roth, N.E.W., Li, K., Rundel, M.Ç., Canelas, D.A.: Understanding the massive open online course (MOOC) student experience: an examination of attitudes motivations and barriers. Comput. Educ. 110, 35–50 (2017)
CrossRef
Google Scholar
Steyn, C., Davies, C., Sambo, A.: Eliciting student feedback for course development: the application of a qualitative course evaluation tool among business research students. Assess. Eval. High. Educ. 44(1), 11–24 (2019)
CrossRef
Google Scholar
Sung, Y.T., Liao, C.N., Chang, T.H., Chen, C.L., Chang, K.E.: The effect of online summary assessment and feedback system on the summary writing on 6th graders: The LSA-based technique. Compu. Educ. 95, 1–18 (2016)
CrossRef
Google Scholar
Thomas, S.W.: Mining software repositories using topic models. In: 2011 33rd International Conference on Software Engineering (ICSE), pp. 1138–1139, May 2011
Google Scholar
Toven-Lindsey, B., Rhoads, R.A., Lozano, J.B.: Virtually unlimited classrooms: pedagogical practices in massive open online courses. Internet High. Educ. 24, 1–12 (2015)
CrossRef
Google Scholar
Wan, X., Yang, J.: Multi-document summarization using cluster-based link analysis. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 299–306. ACM (2008)
Google Scholar
Wang, L., Ling, W.: Neural network-based abstract generation for opinions and arguments. arXiv preprint arXiv:1606.02785 (2016)
Wang, Y., Agichtein, E., Benzi, M.: TM-LDA: efficient online modeling of latent topic transitions in social media. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 123–131. ACM (2012)
Google Scholar
Welch, C., Mihalcea, R.: Targeted sentiment to understand student comments. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2471–2481 (2016)
Google Scholar
Xiong, W., Litman, D.: Empirical analysis of exploiting review helpfulness for extractive summarization of online reviews. In: Proceedings of coling 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 1985–1995 (2014)
Google Scholar
Zhang, Y., Chen, M., Huang, D., Wu, D., Li, Y.: iDoctor: personalized and professionalized medical recommendations based on hybrid matrix factorization. Future Gener. Comput. Syst. 66, 30–35 (2017)
CrossRef
Google Scholar