Skip to main content

Radiobiologic Factors to Consider with Total Marrow Irradiation

  • Chapter
  • First Online:
Total Marrow Irradiation
  • 435 Accesses

Abstract

Total Marrow Irradiation (TMI) is an emerging, technologically advanced radiation conditioning regimen that can simultaneously delivery radiation to specific body structures with high hematological disease burden and reduce radiation to organs at risk in order to maintain function. The result is an extraordinary ability to modulate the radiation dose to a very large extended target through the body, effecting a paradigm shift in the treatment of hematological malignancies. However, the radiobiological relevance is beginning to emerge and will be a valuable step for advancing the clinical benefit of this new technology. Toward this goal, we address the pathology of hematological disease, the historical relevance of total body irradiation and its limitations that led to TMI development, and key factors that are associated with radiobiological assessment. Furthermore, a vision of the future of radiology is discussed, in which we are expected to achieve an improved understanding of the complex and extended nature of disease and its associated microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.C. Society, Cancer facts and figures, (2019).

    Google Scholar 

  2. Cowen D, Richaud P, Landriau S, Lagarde P, Mahon F-X, Baudet J-J, Belloc F, Gualde N, Reiffers J. Radiobiological features of acute myeloblastic leukemia: comparison of self-renewal versus terminally differentiated populations. Int J Radiat Oncol Biol Phys. 1994;30(5):1133–40.

    Article  CAS  PubMed  Google Scholar 

  3. Shankland KR, Armitage JO, Hancock BW. Non-hodgkin lymphoma. Lancet. 2012;380(9844):848–57.

    Article  PubMed  Google Scholar 

  4. Eleutherakis-Papaiakovou V, Bamias A, Gika D, Simeonidis A, Pouli A, Anagnostopoulos A, Michali E, Economopoulos T, Zervas K, Dimopoulos on behalf of the Greek Myeloma Study Group. Renal failure in multiple myeloma: incidence, correlations, and prognostic significance. Leuk Lymphoma. 2007;48(2):337–41.

    Article  CAS  PubMed  Google Scholar 

  5. Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, Fonseca R, Rajkumar SV, Offord JR, Larson DR. Review of 1027 patients with newly diagnosed multiple myeloma, Mayo Clinic proceedings. Amsterdam: Elsevier; 2003. p. 21–33.

    Google Scholar 

  6. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60.

    Article  CAS  PubMed  Google Scholar 

  7. Rajkumar SV, Kyle RA. Multiple myeloma: diagnosis and treatment, Mayo Clinic proceedings. Amsterdam: Elsevier; 2005. p. 1371–82.

    Google Scholar 

  8. Dores GM, Landgren O, McGlynn KA, Curtis RE, Linet MS, Devesa SS. Plasmacytoma of bone, extramedullary plasmacytoma, and multiple myeloma: incidence and survival in the United States, 1992–2004. Br J Haematol. 2009;144(1):86–94.

    Article  PubMed  Google Scholar 

  9. Varettoni M, Corso A, Pica G, Mangiacavalli S, Pascutto C, Lazzarino M. Incidence, presenting features and outcome of extramedullary disease in multiple myeloma: a longitudinal study on 1003 consecutive patients. Ann Oncol. 2009;21(2):325–30.

    Article  PubMed  Google Scholar 

  10. Mikhael J, Ismaila N, Cheung MC, Costello C, Dhodapkar MV, Kumar S, Lacy M, Lipe B, Little RF, Nikonova A. Treatment of multiple myeloma: ASCO and CCO joint clinical practice guideline. J Clin Oncol. 2019;37(14):1228–63.

    Article  PubMed  Google Scholar 

  11. Röntgen WC. On a new kind of rays. Science. 1896;3(59):227–31.

    Article  PubMed  Google Scholar 

  12. Despeignes V. Observation concernant un cas de cancer de l'estomac traite par les rayons Rontgen. Lyon Méd J. 1896;82:428–30. 503-506

    Google Scholar 

  13. Grubbe EH. X-rays in the treatment of cancer and other malignant diseases. Med Rec (1866–1922). 1902;62(18):692.

    Google Scholar 

  14. Garland LH, Kennedy BR. Roentgen treatment of multiple myeloma. Radiology. 1948;50(3):297–317.

    Article  CAS  PubMed  Google Scholar 

  15. Bosch A, Frias Z. Radiotherapy in the treatment of multiple myeloma. Int J Radiat Oncol Biol Phys. 1988;15(6):1363–9.

    Article  CAS  PubMed  Google Scholar 

  16. Tobias JS, Richards JD, Blackman G, Joannides T, Trask C, Nathan JI. Hemibody irradiation in multiple myeloma. Radiother Oncol. 1985;3(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  17. Chow E, Harris K, Fan G, Tsao M, Sze WM. Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol. 2007;25(11):1423–36.

    Article  PubMed  Google Scholar 

  18. Rudzianskiene M, Inciura A, Gerbutavicius R, Rudzianskas V, Macas A, Simoliuniene R, Dambrauskiene R, Kiavialaitis GE, Juozaityte E. Single vs. multiple fraction regimens for palliative radiotherapy treatment of multiple myeloma. Strahlenther Onkol. 2017;193(9):742–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Matuschek C, Ochtrop TA, Bölke E, Ganswindt U, Fenk R, Gripp S, Kröpil P, Gerber PA, Kammers K, Hamilton J. Effects of radiotherapy in the treatment of multiple myeloma: a retrospective analysis of a single institution. Radiat Oncol. 2015;10(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liebross RH, Ha CS, Cox JD, Weber D, Delasalle K, Alexanian R. Solitary bone plasmacytoma: outcome and prognostic factors following radiotherapy. Int J Radiat Oncol Biol Phys. 1998;41(5):1063–7.

    Article  CAS  PubMed  Google Scholar 

  21. Talamo G, Dimaio C, Abbi KK, Pandey MK, Malysz J, Creer MH, Zhu J, Mir MA, Varlotto JM. Current role of radiation therapy for multiple myeloma. Front Oncol. 2015;5:40.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kyle RA, Rajkumar SV. Treatment of multiple myeloma: a comprehensive review. Clin Lymphoma Myeloma. 2009;9(4):278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brody H. Multiple myeloma. Nature. 2011;480(7377):S33.

    Article  CAS  PubMed  Google Scholar 

  24. McSweeney E, Tobias J, Blackman G, Goldstone A, Richards J. Double hemibody irradiation (DHBI) in the management of relapsed and primary chemoresistant multiple myeloma. Clin Oncol. 1993;5(6):378–83.

    Article  CAS  Google Scholar 

  25. Thomas P, Daban A, Bontoux D. Double hemibody irradiation in chemotherapy-resistant multiple myeloma. Cancer Treat Rep. 1984;68(9):1173–6.

    CAS  PubMed  Google Scholar 

  26. Troussard X, Macro M, Vie B, Batho A, Peny A, Reman O, Tabah I, Leporrier M. Human recombinant granulocyte-macrophage colony stimulating factor (hrGM-CSF) improves double hemibody irradiation (DHBI) tolerance in patients with stage III multiple myeloma: a pilot study. Br J Haematol. 1995;89(1):191–5.

    Article  CAS  PubMed  Google Scholar 

  27. Teschendorf W. Uber Bestrahlung des ganzen menschliclhen Korpers bei Blutklrankheiten. Shrahlentherapie. 1927;26:720–8.

    Google Scholar 

  28. Andrews G, Sitterson B, White D, Kniseley R, Comas F. Summary of clinical total-body irradiation program. Oak Ridge Institute of Nuclear Studies, Medical Division, Research Report for 1962.

    Google Scholar 

  29. Draeger R, Lee R, Shea T Jr, Whitten F, Eicher M. Design and construction of a radiocobalt large animal irradiator. Bethesda, MD: Naval Medical Research Inst; 1953.

    Google Scholar 

  30. Hayes R, Oddie T, Brucer M. Dose comparison of two total-body irradiation facilities. Int J Appl Radiat Isot. 1964;15(6):313–8.

    Article  CAS  PubMed  Google Scholar 

  31. Heublein AC. A preliminary report on continuous irradiation of the entire body. Radiology. 1932;18(6):1051–62.

    Article  Google Scholar 

  32. Jacobs ML, Marasso FJ. A four-year experience with total-body irradiation. Radiology. 1965;84(3):452–6.

    Article  CAS  PubMed  Google Scholar 

  33. Jacobs ML, Pape L. A total body irradiation chamber and its uses. Int J Appl Radiat Isot. 1960;8:141–3.

    Article  CAS  PubMed  Google Scholar 

  34. Thomas ED, Lochte HL Jr, Cannon JH, Sahler OD, Ferrebee JW. Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest. 1959;38:1709–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meulenbeld GJ. A history of Indian medical literature, E. Forsten Groningen. 1999.

    Google Scholar 

  36. Tagliacozzi G. Decurtorum cirugia per insitionum. Venice, Italy: Bindonum; 1597.

    Google Scholar 

  37. Carrel A. Results of the transplantation of blood vessels, organs and limbs. JAMA. 1908;51(20):1662–7.

    Article  Google Scholar 

  38. Medawar PB. Immunity to homologous grafted skin. III. The fate of skin homographs transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol. 1948;29(1):58.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jacobson L. The effect of spleen protection on mortaility following X-irradiation. J Lab Clin Med. 1949;34:1538.

    Google Scholar 

  40. Lorenz E, Uphoff D, Reid T, Shelton E. Modification of irradiation injury in mice and Guinea pigs by bone marrow injections. J Natl Cancer Inst. 1951;12(1):197–201.

    CAS  PubMed  Google Scholar 

  41. Cavins JA, KASAKURA S, THOMAS ED, FERREBEE JW. Recovery of lethally irradiated dogs following infusion of autologous marrow stored at low temperature in dimethyl-sulphoxide. Blood. 1962;20(6):730–4.

    Article  CAS  PubMed  Google Scholar 

  42. Barnes D, Corp M, Loutit J, Neal F. Treatment of murine leukaemia with x rays and homologous bone marrow. Br Med J. 1956;2(4993):626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barlogie B, Attal M, Crowley J, van Rhee F, Szymonifka J, Moreau P, Durie BG, Harousseau J-L. Long-term follow-up of autotransplantation trials for multiple myeloma: update of protocols conducted by the intergroupe francophone du myelome, southwest oncology group, and university of Arkansas for medical sciences. J Clin Oncol. 2010;28(7):1209.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ghobrial IM, Stewart AK. ASH evidence-based guidelines: what is the role of maintenance therapy in the treatment of multiple myeloma? Hematology Am Soc Hematol Educ Program. 2009;2009(1):587–9.

    Article  Google Scholar 

  45. Adkins DR, DiPersio JF. Total body irradiation before an allogeneic stem cell transplantation: is there a magic dose? Curr Opin Hematol. 2008;15(6):555–60.

    Article  PubMed  Google Scholar 

  46. Zaucha RE, Buckner DC, Barnett T, Holmberg LA, Gooley T, Hooper HA, Maloney DG, Appelbaum F, Bensinger WI. Modified total body irradiation as a planned second high-dose therapy with stem cell infusion for patients with bone-based malignancies. Int J Radiat Oncol Biol Phys. 2006;64(1):227–34.

    Article  PubMed  Google Scholar 

  47. Moreau P, Facon T, Attal M, Hulin C, Michallet M, Maloisel F, Sotto J-J, Guilhot F, Marit G, Doyen C. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe francophone du Myelome 9502 randomized trial. Blood. 2002;99(3):731–5.

    Article  CAS  PubMed  Google Scholar 

  48. Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F, Giaccone L, Sorasio R, Omedè P, Baldi I. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med. 2007;356(11):1110–20.

    Article  CAS  PubMed  Google Scholar 

  49. Garban F, Attal M, Michallet M, Hulin C, Bourhis JH, Yakoub-Agha I, Lamy T, Marit G, Maloisel F, Berthou C. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood. 2006;107(9):3474–80.

    Article  CAS  PubMed  Google Scholar 

  50. Lahuerta JJ, Martinez-Lopez J, Grande C, Bladé J, Serna JDL, Alegre A, García-Laraña J, Caballero D, Sureda A, Rubia JDL. Conditioning regimens in autologous stem cell transplantation for multiple myeloma: a comparative study of efficacy and toxicity from the Spanish registry for transplantation in multiple myeloma. Br J Haematol. 2000;109(1):138–47.

    Article  CAS  PubMed  Google Scholar 

  51. Shimizu T, Motoji T, Oshimi K, Mizoguchi H. Proliferative state and radiosensitivity of human myeloma stem cells. Br J Cancer. 1982;45(5):679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goel A, Dispenzieri A, Geyer SM, Greiner S, Peng K-W, Russell SJ. Synergistic activity of the proteasome inhibitor PS-341 with non-myeloablative 153-Sm-EDTMP skeletally targeted radiotherapy in an orthotopic model of multiple myeloma. Blood. 2006;107(10):4063–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen X, Wong P, Radany EH, Stark JM, Laulier C, Wong JY. Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of RAD51 protein and inhibition of homology-directed repair in multiple myeloma. Mol Cancer Res. 2012;10(8):1052–64.

    Article  CAS  PubMed  Google Scholar 

  54. Amin AE, Wheldon TE, O'Donoghue JA, Gaze MN, Barrett A. Optimum combination of targeted 131I and total body irradiation for treatment of disseminated cancer. Int J Radiat Oncol Biol Phys. 1995;32(3):713–21.

    Article  CAS  PubMed  Google Scholar 

  55. Dingli D, Peng K-W, Harvey ME, Greipp PR, O'Connor MK, Cattaneo R, Morris JC, Russell SJ. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood. 2004;103(5):1641–6.

    Article  CAS  PubMed  Google Scholar 

  56. Goel A, Carlson SK, Classic KL, Greiner S, Naik S, Power AT, Bell JC, Russell SJ. Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV (Δ51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene. Blood. 2007;110(7):2342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Illidge TM, Bayne M, Brown NS, Chilton S, Cragg MS, Glennie MJ, Du Y, Lewington V, Smart J, Thom J. Phase 1/2 study of fractionated 131I-rituximab in low-grade B-cell lymphoma: the effect of prior rituximab dosing and tumor burden on subsequent radioimmunotherapy. Blood. 2009;113(7):1412–21.

    Article  CAS  PubMed  Google Scholar 

  58. Supiot S, Gouard S, Charrier J, Apostolidis C, Chatal J-F, Barbet J, Davodeau F, Cherel M. Mechanisms of cell sensitization to α radioimmunotherapy by doxorubicin or paclitaxel in multiple myeloma cell lines. Clin Cancer Res. 2005;11(19):7047s–52s.

    Article  CAS  PubMed  Google Scholar 

  59. Supiot S, Thillays F, Rio E, Gouard S, Morgenstern A, Bruchertseifer F, Mahé M-A, Chatal J-F, Davodeau F, Chérel M. Gemcitabine radiosensitizes multiple myeloma cells to low let, but not high let, irradiation. Radiother Oncol. 2007;83(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  60. Chatterjee M, Chakraborty T, Tassone P. Multiple myeloma: monoclonal antibodies-based immunotherapeutic strategies and targeted radiotherapy. Eur J Cancer. 2006;42(11):1640–52.

    Article  CAS  PubMed  Google Scholar 

  61. Lee B-N, Dantzer R, Langley KE, Bennett GJ, Dougherty PM, Dunn AJ, Meyers CA, Miller AH, Payne R, Reuben JM. A cytokine-based neuroimmunologic mechanism of cancer-related symptoms. Neuroimmunomodulation. 2004;11(5):279–92.

    Article  CAS  PubMed  Google Scholar 

  62. Reyes-Gibby CC, Wu X, Spitz M, Kurzrock R, Fisch M, Bruera E, Shete S. Molecular epidemiology, cancer-related symptoms, and cytokines pathway. Lancet Oncol. 2008;9(8):777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reyes-Gibby CC, Wang J, Spitz M, Wu X, Yennurajalingam S, Shete S. Genetic variations in interleukin-8 and interleukin-10 are associated with pain, depressed mood, and fatigue in lung cancer patients. J Pain Symptom Manag. 2013;46(2):161–72.

    Article  CAS  Google Scholar 

  64. Deeg H, Sullivan K, Buckner C, Storb R, Appelbaum F, Clift R, Doney K, Sanders J, Witherspoon R, Thomas E. Marrow transplantation for acute nonlymphoblastic leukemia in first remission: toxicity and long-term follow-up of patients conditioned with single dose or fractionated total body irradiation. Bone Marrow Transplant. 1986;1(2):151–7.

    CAS  PubMed  Google Scholar 

  65. Girinsky T, Benhamou E, Bourhis J-H, Dhermain F, Guillot-Valls D, Ganansia V, Luboinski M, Perez A, Cosset JM, Socie G. Prospective randomized comparison of single-dose versus hyperfractionated total-body irradiation in patients with hematologic malignancies. J Clin Oncol. 2000;18(5):981.

    Article  CAS  PubMed  Google Scholar 

  66. Labar B, Bogdanić V, Nemet D, Mrsić M, Vrtar M, Grgić-Markulin L, Kalenić S, Vujasinović S, Presecki V, Jakić-Razumović J. Total body irradiation with or without lung shielding for allogeneic bone marrow transplantation. Bone Marrow Transplant. 1992;9(5):343–7.

    CAS  PubMed  Google Scholar 

  67. Shank B, O'Reilly RJ, Cunningham I, Kernan N, Yaholom J, Brochstein J, Castro-Malaspina H, Kutcher G, Mohan R, Bonfiglio P. Total body irradiation for bone marrow transplantation: the Memorial Sloan-Kettering Cancer Center experience. Radiother Oncol. 1990;18:68–81.

    Article  PubMed  Google Scholar 

  68. Fowler JF. Development of radiobiology for oncology—a personal view. Phys Med Biol. 2006;51(13):R263.

    Article  PubMed  Google Scholar 

  69. Appelbaum FR. The influence of total dose, fractionation, dose rate, and distribution of total body irradiation on bone marrow transplantation. Semin Oncol. 1993;20(4 Suppl 4):3–10. quiz 11

    CAS  PubMed  Google Scholar 

  70. Gallini R, Hendry J, Molineux G, Testa N. The effect of low dose rate on recovery of hemopoietic and stromal progenitor cells in ?-irradiated mouse bone marrow. Radiat Res. 1988;115:481–7.

    Article  CAS  PubMed  Google Scholar 

  71. Feola JM, Song CW, Khan FM, Levitt SH. Lethal response of C57BL mice to 10 MeV x-rays and to 60Co gamma-rays. Int J Radiat Biol Relat Stud Phys Chem Med. 1974;26(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  72. Ling C, Gerweck L, Zaider M, Yorke E. Dose-rate effects in external beam radiotherapy redux. Radiother Oncol. 2010;95(3):261–8.

    Article  PubMed  Google Scholar 

  73. Welsh J, Howard S, Fowler J. Dose rate in external beam radiotherapy for prostate cancer: an overlooked confounding variable? Urology. 2003;62(2):204.

    Article  PubMed  Google Scholar 

  74. Belkacemi Y, Ozsahin M, Pene F, Rio B, Laporte JP, Leblond V, Touboul E, Schlienger M, Gorin NC, Laugier A. Cataractogenesis after total body irradiation. Int J Radiat Oncol Biol Phys. 1996;35(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  75. COGAN DG, Donaldson DD, REESE AB. Clinical and pathological characteristics of radiation cataract. AMA Arch Ophthalmol. 1952;47(1):55–70.

    Article  CAS  PubMed  Google Scholar 

  76. van Kempen-Harteveld ML, Belkacémi Y, Kal HB, Labopin M, Frassoni F. Dose-effect relationship for cataract induction after single-dose total body irradiation and bone marrow transplantation for acute leukemia. Int J Radiat Oncol Biol Phys. 2002;52(5):1367–74.

    Article  PubMed  Google Scholar 

  77. Cassady JR. Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys. 1995;31(5):1249–56.

    Article  CAS  PubMed  Google Scholar 

  78. Lawton C, Cohen E, Murray K, Derus S, Casper J, Drobyski W, Horowitz M, Moulder J. Long-term results of selective renal shielding in patients undergoing total body irradiation in preparation for bone marrow transplantation. Bone Marrow Transplant. 1997;20(12):1069.

    Article  CAS  PubMed  Google Scholar 

  79. Miralbell R, Sancho G, Bieri S, Carrió I, Helg C, Brunet S, Martin P-Y, Sureda A, De Segura GG, Chapuis B. Renal insufficiency in patients with hematologic malignancies undergoing total body irradiation and bone marrow transplantation: a prospective assessment. Int J Radiat Oncol Biol Phys. 2004;58(3):809–16.

    Article  PubMed  Google Scholar 

  80. Bruno B, Souillet G, Bertrand Y, Werck-Gallois M, Satta AS, Bellon G. Effects of allogeneic bone marrow transplantation on pulmonary function in 80 children in a single paediatric Centre. Bone Marrow Transplant. 2004;34(2):143.

    Article  CAS  PubMed  Google Scholar 

  81. Della Volpe A, Ferreri AJMa, Annaloro C, Mangili P, Rosso A, Calandrino R, Villa E, Lambertenghi-Deliliers G, Fiorino C. Lethal pulmonary complications significantly correlate with individually assessed mean lung dose in patients with hematologic malignancies treated with total body irradiation. Int J Radiat Oncol Biol Phys. 2002;52(2):483–8.

    Article  PubMed  Google Scholar 

  82. Abugideiri M, Nanda RH, Butker C, Zhang C, Kim S, Chiang K-Y, Butker E, Khan MK, Haight AE, Chen Z. Factors influencing pulmonary toxicity in children undergoing allogeneic hematopoietic stem cell transplantation in the setting of total body irradiation-based myeloablative conditioning. Int J Radiat Oncol Biol Phys. 2016;94(2):349–59.

    Article  PubMed  Google Scholar 

  83. Ozsahin M, Pène F, Touboul E, Gindrey-Vie B, Dominique C, Lefkopoulos D, Krzisch C, Balosso J, Vitu L, Schwartz LH. Total-body irradiation before bone marrow transplantation. Results of two randomized instantaneous dose rates in 157 patients. Cancer. 1992;69(11):2853–65.

    Article  CAS  PubMed  Google Scholar 

  84. Sampath S, Schultheiss TE, Wong J. Dose response and factors related to interstitial pneumonitis after bone marrow transplant. Int J Radiat Oncol Biol Phys. 2005;63(3):876–84.

    Article  PubMed  Google Scholar 

  85. Tarbell NJ, Amato DA, Down JD, Mauch P, Hellman S. Fractionation and dose rate effects in mice: a model for bone marrow transplantation in man. Int J Radiat Oncol Biol Phys. 1987;13(7):1065–9.

    Article  CAS  PubMed  Google Scholar 

  86. Travis EL, Peters L, McNeill J, Thames H Jr, Karolis C. Effect of dose-rate on total body irradiation: lethality and pathologic findings. Radiother Oncol. 1985;4(4):341–51.

    Article  CAS  PubMed  Google Scholar 

  87. Weiner RS, Bortin MM, Gale RP, Gluckman E, Kay HE, Kolb H-J, Hartz AJ, Rimm AA. Interstitial pneumonitis after bone marrow transplantation: assessment of risk factors. Ann Intern Med. 1986;104(2):168–75.

    Article  CAS  PubMed  Google Scholar 

  88. Gerbi BJ, Dusenbery KE. Design specifications for a treatment stand used for total body photon irradiation with patients in a standing position. Med Dosim. 1995;20(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  89. Hui S, Verneris M, Froelich J, Dusenbery K, Welsh J. Multimodality image guided total marrow irradiation and verification of the dose delivered to the lung, PTV, and thoracic bone in a patient: a case study. Technol Cancer Res Treat. 2009;8(1):23.

    Article  PubMed  Google Scholar 

  90. Hui SK. Helical tomotherapy targeting total bone marrow–first clinical experience at the University of Minnesota. Acta Oncol. 2007;46(2):250–5.

    Article  PubMed  Google Scholar 

  91. Hui SK, Kapatoes J, Fowler J, Henderson D, Olivera G, Manon RR, Gerbi B, Mackie TR, Welsh JS. Feasibility study of helical tomotherapy for total body or total marrow irradiation. Med Phys. 2005;32(10):3214–24.

    Article  PubMed  Google Scholar 

  92. Glass TJ, Hui SK, Blazar BR, Lund TC. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish. PLoS One. 2013;8(9):e73745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hui SK, Das R, Thomadsen B, Henderson D. CT-based analysis of dose homogeneity in total body irradiation using lateral beam. J Appl Clin Med Phys. 2004;5(4):71–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wheldon TE, Barrett A. Radiobiological modelling of the treatment of leukaemia by total body irradiation. Radiother Oncol. 2001;58(3):227–33.

    Article  CAS  PubMed  Google Scholar 

  95. Kal HB, van Kempen-Harteveld ML, Heijenbrok-Kal MH, Struikmans H. Biologically effective dose in total-body irradiation and hematopoietic stem cell transplantation. Strahlenther Onkol. 2006;182(11):672–9.

    Article  PubMed  Google Scholar 

  96. Marks DI, Forman SJ, Blume KG, Pérez WS, Weisdorf DJ, Keating A, Gale RP, Cairo MS, Copelan EA, Horan JT. A comparison of cyclophosphamide and total body irradiation with etoposide and total body irradiation as conditioning regimens for patients undergoing sibling allografting for acute lymphoblastic leukemia in first or second complete remission. Biol Blood Marrow Transplant. 2006;12(4):438–53.

    Article  CAS  PubMed  Google Scholar 

  97. Clift RA, Buckner CD, Appelbaum FR, Bearman S, Petersen F, Fisher L, Anasetti C, Beatty P, Bensinger W, Doney K. Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens [see comments]. Blood. 1990;76(9):1867–71.

    Article  CAS  PubMed  Google Scholar 

  98. Clift RA, Buckner CD, Appelbaum FR, Bryant E, Bearman SI, Petersen FB, Fisher L, Anasetti C, Beatty P, Bensinger W. Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: a randomized trial of two irradiation regimens. Blood. 1991;77(8):1660–5.

    Article  CAS  PubMed  Google Scholar 

  99. Schultheiss TE, Wong J, Liu A, Olivera G, Somlo G. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy. Int J Radiat Oncol Biol Phys. 2007;67(4):1259–67.

    Article  PubMed  Google Scholar 

  100. Wong JY, Forman S, Somlo G, Rosenthal J, Liu A, Schultheiss T, Radany E, Palmer J, Stein A. Dose escalation of total marrow irradiation with concurrent chemotherapy in patients with advanced acute leukemia undergoing allogeneic hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys. 2013;85(1):148–56.

    Article  PubMed  Google Scholar 

  101. Wong JY, Liu A, Schultheiss T, Popplewell L, Stein A, Rosenthal J, Essensten M, Forman S, Somlo G. Targeted total marrow irradiation using three-dimensional image-guided tomographic intensity-modulated radiation therapy: an alternative to standard total body irradiation. Biol Blood Marrow Transplant. 2006;12(3):306–15.

    Article  PubMed  Google Scholar 

  102. Wong JY, Rosenthal J, Liu A, Schultheiss T, Forman S, Somlo G. Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys. 2009;73(1):273–9.

    Article  PubMed  Google Scholar 

  103. Aydogan B, Mundt AJ, Roeske JC. Linac-based intensity modulated total marrow irradiation (IM-TMI). Technol Cancer Res Treat. 2006;5(5):513–9.

    Article  PubMed  Google Scholar 

  104. Aydogan B, Yeginer M, Kavak GO, Fan J, Radosevich JA, Gwe-Ya K. Total marrow irradiation with RapidArc volumetric arc therapy. Int J Radiat Oncol Biol Phys. 2011;81(2):592–9.

    Article  PubMed  Google Scholar 

  105. Somlo G, Spielberger R, Frankel P, Karanes C, Krishnan A, Parker P, Popplewell L, Sahebi F, Kogut N, Snyder D. Total marrow irradiation: a new ablative regimen as part of tandem autologous stem cell transplantation for patients with multiple myeloma. Clin Cancer Res. 2011;17(1):174–82.

    Article  CAS  PubMed  Google Scholar 

  106. Stein A, Palmer J, Tsai N-C, Al Malki MM, Aldoss I, Ali H, Aribi A, Farol L, Karanes C, Khaled S. Phase I trial of total marrow and lymphoid irradiation transplantation conditioning in patients with relapsed/refractory acute leukemia. Biol Blood Marrow Transplant. 2017;23(4):618–24.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Stein AS, O'Donnell MR, Synold TW, Dagis AC, Tsirunyan A, Nademanee AP, Parker PM, Pullarkat VA, Snyder DS, Spielberger RT. Phase-2 trial of an intensified conditioning regimen for allogeneic hematopoietic cell transplant for poor-risk leukemia. Bone Marrow Transplant. 2011;46(9):1256.

    Article  CAS  PubMed  Google Scholar 

  108. Stein A, Palmer J, Tsai NC, Al Malki MM, Aldoss I, Ali H, Aribi A, Farol L, Karanes C, Khaled S, Liu A, O’Donnell M, Parker P, Pawlowska A, Pullarkat V, Radany E, Rosenthal J, Sahebi F, Salhotra A, Sanchez JF, Schultheiss T, Spielberger R, Thomas SH, Snyder D, Nakamura R, Marcucci G, Forman SJ, Wong J. Phase I Trial of Total Marrow and Lymphoid Irradiation Transplantation Conditioning in Patients with Relapsed/Refractory Acute Leukemia. Biol Blood Marrow Transplant. 2017;23(4):618–24.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hui S, Brunstein C, Takahashi Y, DeFor T, Holtan SG, Bachanova V, Wilke C, Zuro D, Ustun C, Weisdorf D. Dose escalation of total marrow irradiation in high-risk patients undergoing allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23(7):1110–6.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Patel P, Oh AL, Koshy M, Sweiss K, Saraf SL, Quigley JG, Khan I, Mahmud N, Hacker E, Ozer H. A phase 1 trial of autologous stem cell transplantation conditioned with melphalan 200 mg/m2 and total marrow irradiation (TMI) in patients with relapsed/refractory multiple myeloma. Leuk Lymphoma. 2018;59(7):1666–71.

    Article  CAS  PubMed  Google Scholar 

  111. Rosenthal J, Wong J, Stein A, Qian D, Hitt D, Naeem H, Dagis A, Thomas SH, Forman S. Phase 1/2 trial of total marrow and lymph node irradiation to augment reduced-intensity transplantation for advanced hematologic malignancies. Blood. 2011;117(1):309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Morton LM, Dores GM, Schonfeld SJ, Linet MS, Sigel BS, Lam CJK, Tucker MA, Curtis RE. Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol. 2018;5(3):318–25.

    Article  PubMed Central  Google Scholar 

  113. Bhatia S, Robison LL, Oberlin O, Greenberg M, Bunin G, Fossati-Bellani F, Meadows AT. Breast cancer and other second neoplasms after childhood Hodgkin's disease. N Engl J Med. 1996;334(12):745–51.

    Article  CAS  PubMed  Google Scholar 

  114. Boivin JF, Hutchison GB, Zauber AG, Bernstein L, Davis FG, Michel RP, Zanke B, Tan CT, Fuller LM, Mauch P, et al. Incidence of second cancers in patients treated for Hodgkin's disease. J Natl Cancer Inst. 1995;87(10):732–41.

    Article  CAS  PubMed  Google Scholar 

  115. Majhail NS. Long-term complications after hematopoietic cell transplantation. Hematol Oncol Stem Cell Ther. 2017;10(4):220–7.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pui CH, Ribeiro RC, Hancock ML, Rivera GK, Evans WE, Raimondi SC, Head DR, Behm FG, Mahmoud MH, Sandlund JT, et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med. 1991;325(24):1682–7.

    Article  CAS  PubMed  Google Scholar 

  117. Travis LB, Curtis RE, Glimelius B, Holowaty E, Van Leeuwen FE, Lynch CF, Adami J, Gospodarowicz M, Wacholder S, Inskip P, et al. Second cancers among long-term survivors of non-Hodgkin's lymphoma. J Natl Cancer Inst. 1993;85(23):1932–7.

    Article  CAS  PubMed  Google Scholar 

  118. Rossnagl S, Ghura H, Groth C, Altrock E, Jakob F, Schott S, Wimberger P, Link T, Kuhlmann JD, Stenzl A. A subpopulation of stromal cells controls cancer cell homing to the bone marrow. Cancer Res. 2018;78(1):129–42.

    Article  CAS  PubMed  Google Scholar 

  119. Lohr JG, Kim S, Gould J, Knoechel B, Drier Y, Cotton MJ, Gray D, Birrer N, Wong B, Ha G. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med. 2016;8(363):363ra147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Hill BS, Pelagalli A, Passaro N, Zannetti A. Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget. 2017;8(42):73296.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Islam MS, Stemig ME, Takahashi Y, Hui SK. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells. J Radiat Res. 2014;56(2):269–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer. 2016;16(6):373.

    Article  CAS  PubMed  Google Scholar 

  123. KNOSPE WH, BLOM J, CROSBY WH, Davis M. Regeneration of locally irradiated bone marrow: I. dose dependent, long-term changes in the rat, with particular emphasis upon vascular and stromal reaction. Blood. 1966;28(3):398–415.

    CAS  PubMed  Google Scholar 

  124. Rebel V, Miller C, Spinelli J, Thomas T, Eaves C, Lansdorp P. Nonlinear effects of radiation dose on donor-cell reconstitution by limited numbers of purified stem cells. Biol Blood Marrow Transplant. 1995;1(1):32–9.

    CAS  PubMed  Google Scholar 

  125. McAfee SL, Powell SN, Colby C, Spitzer TR. Dose-escalated total body irradiation and autologous stem cell transplantation for refractory hematologic malignancy. Int J Radiat Oncol Biol Phys. 2002;53(1):151–6.

    Article  PubMed  Google Scholar 

  126. Georgiou KR, Hui SK, Xian CJ. Regulatory pathways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocorticoid therapy and radiotherapy. Am J Stem Cells. 2012;1(3):205.

    PubMed  PubMed Central  Google Scholar 

  127. Yagi M, Arentsen L, Shanley RM, Rosen CJ, Kidder LS, Sharkey LC, Yee D, Koizumi M, Ogawa K, Hui SK. A dual-radioisotope hybrid whole-body micro-positron emission tomography/computed tomography system reveals functional heterogeneity and early local and systemic changes following targeted radiation to the murine caudal skeleton. Calcif Tissue Int. 2014;94(5):544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wilke C, Holtan SG, Sharkey L, DeFor T, Arora M, Premakanthan P, Yohe S, Vagge S, Zhou D, Chakrabarty JLH. Marrow damage and hematopoietic recovery following allogeneic bone marrow transplantation for acute leukemias: effect of radiation dose and conditioning regimen. Radiother Oncol. 2016;118(1):65–71.

    Article  PubMed  Google Scholar 

  129. Hui SK, Arentsen L, Sueblinvong T, Brown K, Bolan P, Ghebre RG, Downs L, Shanley R, Hansen KE, Minenko AG. A phase I feasibility study of multi-modality imaging assessing rapid expansion of marrow fat and decreased bone mineral density in cancer patients. Bone. 2015;73:90–7.

    Article  PubMed  Google Scholar 

  130. Magome T, Froelich J, Takahashi Y, Arentsen L, Holtan S, Verneris MR, Brown K, Haga A, Nakagawa K, Chakrabarty JLH. Evaluation of functional marrow irradiation based on skeletal marrow composition obtained using dual-energy computed tomography. Int J Radiat Oncol Biol Phys. 2016;96(3):679–87.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kumar B, Orellana M, Brooks J, Madabushi SS, Parra LE, Zuro D, Wang Q, Chen C-C, Hui S. Leukemia cells remodel adipocyte niches and their progenitor functions to generate leukemia favoring niche. Am Soc Hematol. 2018;132:1294.

    Google Scholar 

  132. Tomé WA, Fowler JF. On cold spots in tumor subvolumes. Med Phys. 2002;29(7):1590–8.

    Article  PubMed  Google Scholar 

  133. Levitt SH, Perez CA, Hui S, Purdy JA. Evolution of computerized radiotherapy in radiation oncology: potential problems and solutions. Int J Radiat Oncol Biol Phys. 2008;70(4):978–86.

    Article  PubMed  Google Scholar 

  134. Takahashi Y, Vagge S, Agostinelli S, Han E, Matulewicz L, Schubert K, Chityala R, Ratanatharathorn V, Tournel K, Penagaricano JA. Multi-institutional feasibility study of a fast patient localization method in total marrow irradiation with helical tomotherapy: a global health initiative by the international consortium of total marrow irradiation. Int J Radiat Oncol Biol Phys. 2015;91(1):30–8.

    Article  PubMed  Google Scholar 

  135. Wolf MB, Murray F, Kilk K, Hillengass J, Delorme S, Heiss C, Neben K, Goldschmidt H, Kauczor H-U, Weber M-A. Sensitivity of whole-body CT and MRI versus projection radiography in the detection of osteolyses in patients with monoclonal plasma cell disease. Eur J Radiol. 2014;83(7):1222–30.

    Article  PubMed  Google Scholar 

  136. Terpos E, Dimopoulos MA, Moulopoulos LA. The role of imaging in the treatment of patients with multiple myeloma in 2016. Am Soc Clin Oncol Educ Book. 2016;36:e407–17.

    Article  Google Scholar 

  137. Moreau P, Attal M, Caillot D, Macro M, Karlin L, Garderet L, Facon T, Benboubker L, Escoffre-Barbe M, Stoppa A-M. Prospective evaluation of magnetic resonance imaging and [18F] fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: results of the IMAJEM study. J Clin Oncol. 2017;35(25):2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zamagni E, Nanni C, Mancuso K, Tacchetti P, Pezzi A, Pantani L, Zannetti B, Rambaldi I, Brioli A, Rocchi S. PET/CT improves the definition of complete response and allows to detect otherwise unidentifiable skeletal progression in multiple myeloma. Clin Cancer Res. 2015;21(19):4384–90.

    Article  CAS  PubMed  Google Scholar 

  139. Buck AK, Bommer M, Juweid ME, Glatting G, Stilgenbauer S, Mottaghy FM, Schulz M, Kull T, Bunjes D, Möller P. First demonstration of leukemia imaging with the proliferation marker 18F-fluorodeoxythymidine. J Nucl Med. 2008;49(11):1756–62.

    Article  PubMed  Google Scholar 

  140. Vanderhoek M, Juckett MB, Perlman SB, Nickles RJ, Jeraj R. Early assessment of treatment response in patients with AML using [18 F] FLT PET imaging. Leuk Res. 2011;35(3):310–6.

    Article  PubMed  Google Scholar 

  141. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.

    Article  CAS  PubMed  Google Scholar 

  143. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  144. Gerlinger M, McGranahan N, Dewhurst SM, Burrell RA, Tomlinson I, Swanton C. Cancer: evolution within a lifetime. Annu Rev Genet. 2014;48:215–36.

    Article  CAS  PubMed  Google Scholar 

  145. Vaux DL. In defense of the somatic mutation theory of cancer. BioEssays. 2011;33(5):341–3.

    Article  PubMed  Google Scholar 

  146. Pawlyn C, Morgan GJ. Evolutionary biology of high-risk multiple myeloma. Nat Rev Cancer. 2017;17(9):543.

    Article  CAS  PubMed  Google Scholar 

  147. Zoi K, Cross N. Genomics of myeloproliferative neoplasms. J Clin Oncol. 2017;35(9):947–54.

    Article  CAS  PubMed  Google Scholar 

  148. Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, Brown AL. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016;22(7):792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta K. Hui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hui, S.K., Storme, G. (2020). Radiobiologic Factors to Consider with Total Marrow Irradiation. In: Wong, J., Hui, S. (eds) Total Marrow Irradiation. Springer, Cham. https://doi.org/10.1007/978-3-030-38692-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38692-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38691-7

  • Online ISBN: 978-3-030-38692-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics