Skip to main content

Total Marrow Irradiation: Redefining the Role of Radiotherapy in Bone Marrow Transplantation

  • Chapter
  • First Online:
Total Marrow Irradiation

Abstract

Total body irradiation (TBI) is an important part of the conditioning regimen for patients undergoing hematopoietic cell transplantation (HCT), but its use is declining due to a lack of new strategies to reduce TBI toxicities and the introduction of alternative non-TBI approaches. More targeted forms of TBI are needed to address these challenges and to redefine and expand the role of radiotherapy in HCT. Recent image-guided intensity-modulated radiation therapy (IG-IMRT) to large regions of the body now allows for more targeted forms of TBI and is often referred to as total marrow irradiation (TMI) or total marrow and lymphoid irradiation (TMLI) and represents a spectrum of targeted TBI dose distributions. This approach offers the radiation oncologist and transplant team unprecedented control of radiation dose delivery to target regions and organs, which is not possible with any other form of biologically targeted therapy or radiopharmaceutical. The physician can simultaneously reduce dose to critical organs or any other user-defined avoidance structure, while simultaneously increasing dose to particular target regions depending on the tumor burden and clinical situation. TMI is now being performed at multiple centers worldwide and can be delivered using a helical tomographic or volumetric arc-based IMRT approach. Clinical strategies which are being actively evaluated include (1) TMI dose escalation to improve disease control in advanced refractory patients, (2) TMI added to reduced-intensity conditioning (RIC) regimens, (3) TMI added to regimens that utilize post-HCT strategies to reduce GVHD, (4) TMI to improve disease control in standard risk patients as an alternative to current standard of care HCT regimens, and (5) IMRT to deliver TBI to improve dose uniformity and reduce toxicities given its superiority in organ dose reduction compared to conventional TBI. Clinical results have been encouraging and demonstrate feasibility, acceptable toxicities, the ability to offer radiation containing conditioning regimens in older patients or those with comorbidities, the ability to dose escalate safely, and encouraging response and survival rates in advanced disease. Intermediate and long-term toxicities have been shown to be reduced compared to conventional TBI. Initial concerns that the higher dose rate and organ sparing associated with TMI will increase toxicities or relapse rates have not been observed. The use of IMRT to deliver TMI, TMLI, and TBI holds significant promise and will help to redefine and expand the role of radiotherapy in HCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas ED, Lochte HL, Cannon JH, et al. Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest. 1959;38:1709–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blaise D, Maraninchi D, Archimbaud E, et al. Allogeneic bone marrow transplantation for acute myeloid leukemia in first remission: a randomized trial of busulfan-cytoxan versus cytoxan-total body irradiation as a preparative regimen: a report from the Groupe d'Etudes de la Greffe de Moelle Osseuse. Blood. 1992;79:2578–82.

    Article  CAS  PubMed  Google Scholar 

  3. Dusenbery KE, Daniels KA, McClure JS, et al. Randomized comparison of cyclophosphamide-total body irradiation versus busulfan-cyclophosphamide conditioning in autologous bone marrow transplantation for acute myeloid leukemia.[see comment]. Int J Radiat Oncol Biol Phys. 1995;31:119–28.

    Article  CAS  PubMed  Google Scholar 

  4. Ringden O, Labopin M, Tura S, et al. A comparison of busulphan versus total body irradiation combined with cyclophosphamide as conditioning for autograft or allograft bone marrow transplantation in patients with acute leukaemia. Acute Leukaemia working Party of the European Group for blood and marrow transplantation (EBMT). Br J Haematol. 1996;93:637–45.

    Article  CAS  PubMed  Google Scholar 

  5. Bunin N, Aplenc R, Kamani N, et al. Randomized trial of busulfan vs total body irradiation containing conditioning regimens for children with acute lymphoblastic leukemia: a pediatric blood and marrow transplant consortium study. Bone Marrow Transplant. 2003;32:543–8.

    Article  CAS  PubMed  Google Scholar 

  6. Hartman AR, Williams SF, Dillon JJ. Survival, disease-free survival and adverse effects of conditioning for allogeneic bone marrow transplantation with busulfan/cyclophosphamide vs total body irradiation: a meta-analysis. Bone Marrow Transplant. 1998;22:439–43.

    Article  CAS  PubMed  Google Scholar 

  7. Gupta T, Kannan S, Dantkale V, et al. Cyclophosphamide plus total body irradiation compared with busulfan plus cyclophosphamide as a conditioning regimen prior to hematopoietic stem cell transplantation in patients with leukemia: a systematic review and meta-analysis. Hematol Oncol Stem Cell Ther. 2011;4:17–29.

    Article  CAS  PubMed  Google Scholar 

  8. Wong JYC, Filippi AR, Dabaja BS, et al. Total body irradiation: guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys. 2018;101:521–9.

    Article  PubMed  Google Scholar 

  9. Hui SK, Das RK, Thomadsen B, et al. CT-based analysis of dose homogeneity in total body irradiation using lateral beam. J Appl Clin Med Phys. 2004;5:71–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hong S, Barker C, Klein JP, et al. Trends in utilization of total body irradiation (TBI) prior to hematopoietic cell transplantation (HCT) worldwide. Biol Blood Marrow Transplant. 2012;18(2):S336–7. [Abstract]

    Article  Google Scholar 

  11. Mohty M, Malard F, Savani BN. High-dose total body irradiation and myeloablative conditioning before allogenic hematopoietic cell transplantation: time to rethink? Biol Blood Marrow Transplant. 2015;21:620–4.

    Article  PubMed  Google Scholar 

  12. Beavis AW. Is tomotherapy the future of IMRT? Br J Radiol. 2004;77:285–95.

    Article  CAS  PubMed  Google Scholar 

  13. Wong JYC, Liu A, Schultheiss T, et al. Targeted total marrow irradiation using three-dimensional image-guided tomographic intensity-modulated radiation therapy: an alternative to standard total body irradiation. Biol Blood Marrow Transplant. 2006;12:306–15.

    Article  PubMed  Google Scholar 

  14. Han C, Schultheiss T, Wong JY. Dosimetric study of volumetric modulated arc therapy fields for total marrow irradiation. Radiother Oncol. 2012;102:315–20.

    Article  PubMed  Google Scholar 

  15. Aydogan B, Yeginer M, Kavak GO, et al. Total marrow irradiation with rapidarc volumetric arc therapy. Int J Radiat Oncol Biol Phys. 2011;81:592–9.

    Article  PubMed  Google Scholar 

  16. Fogliata A, Cozzi L, Clivio A, et al. Preclinical assessment of volumetric modulated arc therapy for total marrow irradiation. Int J Radiat Oncol Biol Phys. 2011;80:628–36.

    Article  PubMed  Google Scholar 

  17. Patel P, Aydogan B, Koshy M, et al. Combination of linear accelerator-based intensity-modulated total marrow irradiation and myeloablative Fludarabine/Busulfan: a phase I study. Biol Blood Marrow Transplant. 2014;20:2034–41.

    Article  CAS  PubMed  Google Scholar 

  18. Symons K, Morrison C, Parry J, et al. Volumetric modulated arc therapy for total body irradiation: a feasibility study using Pinnacle3 treatment planning system and Elekta agility™ linac. J Appl Clin Med Phys. 2018;19:103–10.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Springer A, Hammer J, Winkler E, et al. Total body irradiation with volumetric modulated arc therapy: Dosimetric data and first clinical experience. Radiat Oncol. 2016;11:1–9.

    Article  CAS  Google Scholar 

  20. Schultheiss TE, Wong J, Liu A, et al. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy. Int J Radiat Oncol Biol Phys. 2007;67:1259–67.

    Article  PubMed  Google Scholar 

  21. Wong JYC, Hui S, Dandapani SV, et al. Biologic and image guided systemic radiotherapy. In: Wong JYC, Schultheiss TE, Radany EH, editors. Advances in radiation oncology. Cham: Springer; 2017. p. 155–89.

    Chapter  Google Scholar 

  22. Stein A, Palmer J, Tsai N-C, et al. Phase I trial of total marrow and lymphoid irradiation transplantation conditioning in patients with relapsed/refractory acute leukemia. Biol Blood Marrow Transplant. 2017;23:618–24.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rosenthal J, Wong J, Stein A, et al. Phase 1/2 trial of total marrow and lymph node irradiation to augment reduced-intensity transplantation for advanced hematologic malignancies. Blood. 2011;117:309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chak LY, Sapozink MD, Cox RS. Extramedullary lesions in non-lymphocytic leukemia: results of radiation therapy. Int J Radiat Oncol Biol Phys. 1983;9:1173–6.

    Article  CAS  PubMed  Google Scholar 

  25. Scarpati D, Frassoni F, Vitale V, et al. Total body irradiation in acute myeloid leukemia and chronic myelogenous leukemia: influence of dose and dose-rate on leukemia relapse. Int J Radiat Oncol Biol Phys. 1989;17:547–52.

    Article  CAS  PubMed  Google Scholar 

  26. Marks DI, Forman SJ, Blume KG, et al. A comparison of cyclophosphamide and total body irradiation with etoposide and total body irradiation as conditioning regimens for patients undergoing sibling allografting for acute lymphoblastic leukemia in first or second complete remission. Biol Blood Marrow Transplant. 2006;12:438–53.

    Article  CAS  PubMed  Google Scholar 

  27. Kal HB, Kempen-Har v. Biologically effective dose in total body irradiation and hematopoietic stem cell transplantation. Strahlenther Onkol. 2006;182:672–9.

    Article  PubMed  Google Scholar 

  28. Clift RA, Buckner CD, Appelbaum FR, et al. Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: a randomized trial of two irradiation regimens. Blood. 1991;77:1660–5.

    Article  CAS  PubMed  Google Scholar 

  29. Clift RA, Buckner CD, Appelbaum FR, et al. Long-term follow-up of a randomized trial of two irradiation regimens for patients receiving allogeneic marrow transplants during first remission of acute myeloid leukemia. Blood. 1998;92:1455–6.

    Article  CAS  PubMed  Google Scholar 

  30. Duval M, Klein JP, He W, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;28:3730–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stein AS, O'Donnell MR, Synold T, et al. Phase-2 trial of an intensified conditioning regimen for allogeneic hematopoietic cell transplant for poor-risk leukemia. Bone Marrow Transplant. 2011;46:1256–62.

    Article  CAS  PubMed  Google Scholar 

  32. Shigematsu A, Tanaka J, Suzuki R, et al. Outcome of medium-dose VP-16/CY/TBI superior to CY/TBI as a conditioning regimen for allogeneic stem cell transplantation in adult patients with acute lymphoblastic leukemia. Int J Hematol. 2011;94:463–71.

    Article  CAS  PubMed  Google Scholar 

  33. Wong JY, Forman S, Somlo G, et al. Dose escalation of total marrow irradiation with concurrent chemotherapy in patients with advanced acute leukemia undergoing allogeneic hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys. 2013;85:148–56.

    Article  PubMed  Google Scholar 

  34. Bearman S, Appelbaum FR, Buckner CD, et al. Regimen-related toxicity in patients undergoing bone marrow transplantation. J Clin Oncol. 1988;6:1562–8.

    Article  CAS  PubMed  Google Scholar 

  35. Stein A, Tsai N-C, Palmer J et al. Total marrow and lymphoid irradiation (TMLI) in combination with cyclophosphamide and Etoposide in patients with relapsed/refractory acute leukemia undergoing allogeneic hematopoietic cell transplantation. Presented at 2019 European Society for Blood and Marrow Transplantation Meeting, Frankfurt, Germany, March 24–27, 2019. 2019; [Abstract].

    Google Scholar 

  36. Hui S, Brunstein C, Takahashi Y, et al. Dose escalation of total marrow irradiation in high-risk patients undergoing allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23:1110–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Deeg HJ, Sandmaier BM. Who is fit for allogeneic transplantation? Blood. 2010;116:4762–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scott BL, Pasquini MC'BWJ, Devine S, et al. Results of a phase III randomized, multicenter study of allogeneic stem cell transplantation after high versus reduced intensity conditioning in patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML): blood and marrow transplant clinical trials network (BMT CTN) 0901. Blood. 2015;126:LBA-8.

    Article  Google Scholar 

  39. Scott BL, Pasquini MC, Logan BR, et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol. 2017;35:1154–61.

    PubMed  PubMed Central  Google Scholar 

  40. Chen GL, Hahn T, Wilding GE, et al. Reduced-intensity conditioning with Fludarabine, Melphalan, and total body irradiation for allogeneic hematopopietic cell transplantation: the effect of increasing Melphalan dose on underlying disease and toxicity. Biol Blood Marrow Transplant. 2018;25:689–98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Jensen LJ, Stiller T, Wong JYC, et al. Total marrow lymphoid irradiation/Fludarabine/Melphalan conditioning for allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2018;24:301–7.

    Article  CAS  PubMed  Google Scholar 

  42. Welliver MX, Vasu S, Weldon TE, et al. Utilizing organ-sparing marrow-targeted irradiation (OSMI) to condition patients with high-risk hematologic malignancies prior to allogeneic hematopoietic stem cell transplantation: results from a prospective pilot study. Int J Radiat Oncol Biol Phys. 2018;102(3S):E370. [Abstract]

    Article  Google Scholar 

  43. Luznik L, Jalla S, Engstrom LW, et al. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood. 2001;98:3456–64.

    Article  CAS  PubMed  Google Scholar 

  44. O'Donnell PV, Luznik L, Jones RJ, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using postransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8:377–86.

    Article  CAS  PubMed  Google Scholar 

  45. Mayumi H, Umesue M, Nomoto K. Cyclophosphamide-induced immunological tolerance: an overview. Immunobiology. 1996;195:129–39.

    Article  CAS  PubMed  Google Scholar 

  46. Luznik L, O'Donnell PV, Symons HJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantion cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Al Malki MM, Palmer J, Wong J et al. Phase I study of escalating doses of total marrow and lymphoid irradiation (TMLI) during conditioning for HLA-Haploidentical hematopoietic cell transplantation (HaploHCT) with post-transplant cyclophosphamide (PTCy) in patients with myelodysplasia or acute leukemia. Presented at 2019 European Society for Blood and Marrow Transplantation Meeting, Frankfurt, Germany, March 24–27, 2019. 2019; [Abstract].

    Google Scholar 

  48. Aristei C, Lancellotta V, Carotti A, et al. Total marrow/total lymphoid irradiation as conditioning for haploidentical hematopoietic stem cell transplantation in acute myeloid leukemia patients. Int J Radiat Oncol Biol Phys. 2018;102(3S):E204. [Abstract]

    Google Scholar 

  49. Zhuang AH, Liu A, Schultheiss TE, et al. Dosimetric study and verification of total body irradiation using helical tomotherapy and its comparison to extended SSD technique. Med Dosim. 2010;35:243–9.

    Article  PubMed  Google Scholar 

  50. Penagaricano JA, Chao M, van Rhee F, et al. Clinical feasibility of TBI with helical tomotherapy. Bone Marrow Transplant. 2011;46:929–35.

    Article  CAS  PubMed  Google Scholar 

  51. Springer A, Hammer JA, Winkler E, et al. Total body irradiation with volumetric modulated arc therapy: Dosimetric data and first clinical experience. Radiat Oncol. 2016;11:46. [Abstract]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sarradin V, Simon L, Huynh A, et al. Total body irradiation using helical Tomotherapy: treatment technique, dosimetric results and initial clinical experience. Cancer/Radiotherapie. 2018;22:17–24.

    Article  CAS  Google Scholar 

  53. Sun R, Cuenca X, Itti R, et al. First French experiences of total body irradiations using helical TomoTherapy. Cancer/Radiotherapie. 2017;21:365–72.

    Article  CAS  Google Scholar 

  54. Esiashvili N, Lu X, Ulin K, Kessel l S, Kalapurakal JA, Merchant TE, Followill DS, Sathiaseelan V, Schmitter MK, Devidas M, Chen Y-J, Wall DA, Brown PA, Hunger SP, Grupp SA, Pulsipher MA. Higher reported lung dose received during total body irradiation for allogeneic hematopoietic stem cell transplantation in children with acute lymphoblastic leukemia is associated wtih inferior survival: a report from the Children's oncology group. Int J Radiat Oncol Biol Phys. 2019;104(3):513–20.

    Article  Google Scholar 

  55. Shinde A, Yang D, Frankel P, et al. Radiation related toxicities using organ sparing total marrow irradiation transplant conditioning regimens. Int J Radiat Oncol Biol Phys. 2019;105(5):1025–33.

    Article  CAS  Google Scholar 

  56. Corvo R, Zeverino M, Vagge S, et al. Helical tomotherapy targeting total bone marrow after total body irradiation for patients with relapsed acute leukemia undergoing an allogeneic stem cell transplant. Radiother Oncol. 2011;98:382–6.

    Article  PubMed  Google Scholar 

  57. Jiang Z, Jia J, Yue C, et al. Haploidentical hematopoietic SCT using helical tomortherapy for total-body irradiation and targeted dose boost in patients with high-risk/refractory acute lymphoblastic leukemia. Bone Marrow Transplant. 2018;53:438–48.

    Article  CAS  PubMed  Google Scholar 

  58. Hahn T, Wingard JR, Anderson KC, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of multiple myeloma: an evidence-based review. Biol Blood Marrow Transplant. 2003;9:4–37.

    Article  PubMed  Google Scholar 

  59. Barlogie B, Jagannath S, Desikan KR, et al. Total therapy with tandem transplants for newly diagnosed multiple myeloma. Blood. 1999;93:55–65.

    Article  CAS  PubMed  Google Scholar 

  60. Moreau P, Facon T, Attal M, et al. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe francophone du Myelome 9502 randomized trial. Blood. 2002;99:731–5.

    Article  CAS  PubMed  Google Scholar 

  61. Somlo G, Spielberger R, Frankel P, et al. Total marrow irradiation: a new ablative regimen as part of tandem autologous stem cell transplantation for patients with multiple myeloma. Clin Cancer Res. 2011;17:174–82.

    Article  CAS  PubMed  Google Scholar 

  62. Somlo G, Liu A, Schultheiss TE, et al. Total marrow irradiation (TMI) with helical tomotherapy and peripheral blood progenitor cell rescue (PBPC) following high-dose melphalan (Mel) and PBPC as part of tandem autologous transplant (TAT) for patients with multiple myeloma. J Clin Oncol. 2015;33(suppl):abstr 8581. [Abstract]

    Article  Google Scholar 

  63. Patel P, Oh AL, Koshy M, et al. A phase I trial of autologous stem cell transplantation conditioned with melphalan 200mg/m2 and total marrow irradiation (TMI) in patients with relapsed/refractory multiple myeloma. Leuk Lymphoma. 2018;59:1666–71.

    Article  CAS  PubMed  Google Scholar 

  64. Shueng PW, Lin SC, Chong NS, et al. Total marrow irradiation with helical tomotherapy for bone marrow transplantation of multiple myeloma: first experience in Asia. Technol Cancer Res Treat. 2009;8:29–38.

    Article  PubMed  Google Scholar 

  65. Samant R, Tay J, Nyiri B, et al. Dose-escalated total-marrow irradiation (TMI) for relapsed multiple myeloma. Int J Radiat Oncol Biol Phys. 2015;93(3S):S65–6. [Abstract]

    Article  Google Scholar 

  66. Hsieh C-H, Shueng P-W, Lin S-C, et al. Helical irradiation of the total skin with dose painting to replace total skin electron beam therapy for therapy-refractory cutaneous CD4+ T-cell lymphoma. Biomed Res Int. 2013;2013:1–11.

    Google Scholar 

  67. Schaff EM, Rosenberg SA, Olson SJ, et al. Bone marrow suppression as a complication of total skin helical tomotherapy in the treatment of mycosis fungoides. Radiat Oncol. 2018;13:1–5.

    Article  CAS  Google Scholar 

  68. Sarfehnia A, Poon E, Davis SD, et al. A novel approach to total skin irradiation using helical TomoTherapy. Pract Radiat Oncol. 2014;4:330–5.

    Article  PubMed  Google Scholar 

  69. Hall MD, Schultheiss TE, Smith DD, et al. Dose response for radiation cataractogenesis: a meta-regression of hematopoietic stem cell transplantation regimens. Int J Radiat Oncol Biol Phys. 2015;91:22–9.

    Article  PubMed  Google Scholar 

  70. Ozsahin M, Pene F, Touboul E, et al. Total-body irradiation before bone marrow transplantation: results of two randomized instantaneous dose rates in 157 patients. Cancer. 1992;69:2853–65.

    Article  CAS  PubMed  Google Scholar 

  71. Cheng JC, Schultheiss TE, Wong JYC. Impact of drug therapy, radiation dose, and dose rate on renal toxicity following bone marrow transplantation. Int J Radiat Oncol Biol Phys. 2008;71:1436–43.

    Article  CAS  PubMed  Google Scholar 

  72. Belkacemi Y, Pene F, Touboul E, et al. Total-body irradiation before bone marrow transplantation for acute leukemia in first or second complete remission. Strahlenther Onkol. 1998;174:92–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carruthers S, Wallington M. Total body irradiation and pneumonitis risk: a review of outcomes. Br J Cancer. 2004;90:2080–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gao RW, Weisdorf D, DeFor TE, et al. Influence of total body irradiation dose rate on idiopathic pneumonia syndrome in acute leukemia patients undergoing allogeneic hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys. 2019;103:180–9.

    Article  PubMed  Google Scholar 

  75. Abugideiri M, Nanda RH, Butker C, et al. Factors influencing pulmonary toxicity in children undergoing allogeneic hematopoietic stem cell transplantation in the setting of total body irradiation-based myeloablative conditioning. Int J Radiat Oncol Biol Phys. 2016;94:349–59.

    Article  PubMed  Google Scholar 

  76. Travis EL, Peters LJ, McNeil J, et al. Effect of dose-rate on total body irradiation: lethality and pathologic findings. Radiother Oncol. 1985;4:341–51.

    Article  CAS  PubMed  Google Scholar 

  77. Weiner R, Bortin M, Gale RP, et al. Interstitial pneumonitis after bone marrow transplantation. Ann Intern Med. 1986;104:168–75.

    Article  CAS  PubMed  Google Scholar 

  78. Tarbell NJ, Amato DA, Down JD, et al. Fractionation and dose rate effects in mice: a model for bone marrow transplantation in man. Int J Radiat Oncol Biol Phys. 1987;13:1065–9.

    Article  CAS  PubMed  Google Scholar 

  79. Sampath S, Schultheiss TE, Wong J. Dose response and factors related to interstitial pneumonitis following bone marrow transplant. Int J Radiat Oncol Biol Phys. 2005;63:876–84.

    Article  PubMed  Google Scholar 

  80. Kim JH, Stein A, Tsai N, et al. Extramedullary relapse following total marrow and lymphoid irradiation in patinets undergoing allogenejic hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys. 2014;89:75–81.

    Article  PubMed  Google Scholar 

  81. Molloy JA. Statistical analysis of dose heterogeneity in circulating blood: implications for sequential methods of total body irradiation. Med Phys. 2010;37:5568–78.

    Article  PubMed  Google Scholar 

  82. Belkacemi Y, Labopin M, Giebel S, et al. Single-dose daily fractionation is not inferior to twice-a-day fractionated total-body irradiation before allogeneic stem cell transplantation for acute leukemia: a useful practice simplification resulting from the SARASIN study. Int J Radiat Oncol Biol Phys. 2018;102:515–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Y. C. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, J.Y.C. (2020). Total Marrow Irradiation: Redefining the Role of Radiotherapy in Bone Marrow Transplantation. In: Wong, J., Hui, S. (eds) Total Marrow Irradiation. Springer, Cham. https://doi.org/10.1007/978-3-030-38692-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38692-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38691-7

  • Online ISBN: 978-3-030-38692-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics