Skip to main content

Concepts, Potentials, and Requirements

  • Chapter
  • First Online:
Human-Robot Body Experience

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

  • 485 Accesses

Abstract

Understanding the embodiment of robotic devices and using this knowledge to improve human-robot interaction touches a variety of open research questions. A considerable body of research outlines the complexity and plasticity of human bodily experience. When examining robotic devices, which can be seen as “intelligent” tools, this challenge is getting even tougher due to the interaction of the involved agents. Beyond this, recent studies point out how the investigation of psychological fundamentals can benefit from using robotic devices for human-in-the-loop evaluation in return. This chapter conveys and discusses fundamental concepts and terminology of human body experience, aiming at accessibility for all concerned disciplines. Concepts of different body representations and the presence in virtual environments are presented along with fundamentals of human motor control and haptic perception. Based on those, perspective potentials in human-robot interaction are outlined with respect to control, sensing, feedback, and assessment. To support the design and application of human-in-the-loop approaches in fundamental research and engineering, the related literature is analyzed to determine and assess crucial design requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kammers, M.P.M., van der Ham, Ineke J.M, Dijkerman, H.C.: Dissociating body representations in healthy individuals: differential effects of a kinaesthetic illusion on perception and action. Neuropsychologia 44(12), 2430–2436 (2006). https://doi.org/10.1016/j.neuropsychologia.2006.04.009

  2. Mayer, A., Kudar, K., Bretz, K., Tihanyi, J.: Body schema and body awareness of amputees. Prosthet. Orthot. Int. 32(3), 363–382 (2008)

    Article  Google Scholar 

  3. Nostadt, N., Abbink, D.A., Christ, O., Beckerle, P.: Embodiment, presence, and their intersections: teleoperation and beyond (submitted). ACM Trans. Hum. Robot Interact. (2020)

    Google Scholar 

  4. Gallagher, S., Cole, J.: Body schema and body image in a deafferented subject. J. Mind Behav. 16, 369–390 (1995)

    Google Scholar 

  5. Holmes, N.P., Spence, C.: The body schema and the multisensory representation(s) of peripersonal space. Cogn. Process. 5(2), 94–105 (2004)

    Article  Google Scholar 

  6. Maravita, A., Iriki, A.: Tools for the body (schema). Trends Cogn. Sci. 8(2), 79–86 (2004)

    Article  Google Scholar 

  7. Cardinali, L., Frassinetti, F., Brozzoli, C., Urquizar, C., Roy, A.C., Farnè, A.: Tool-use induces morphological updating of the body schema. Curr. Biol. 19(12), R478–R479 (2009)

    Article  Google Scholar 

  8. Beckerle, P., De Beir, A., Schürmann, T., Caspar, E.A.: Human body schema exploration: analyzing design requirements of robotic hand and leg illusions. In: IEEE International Symposium on Robot and Human Interactive Communication (2016)

    Google Scholar 

  9. Senra, H., Aragao Oliveira, R., Leal, I., Vieira, C.: Beyond the body image: a qualitative study on how adults experience lower limb amputation. Clin. Rehabil. 26, 180–191 (2011)

    Article  Google Scholar 

  10. Giummarra, M.J., Gibson, S.J., Georgiou-Karistianis, N., Bradshaw, J.L.: Mechanisms underlying embodiment, disembodiment and loss of embodiment. Neurosci. Biobehav. Rev. 32, 143–160 (2008)

    Article  Google Scholar 

  11. Christ, O., Reiner, M.: Perspectives and possible applications of the rubber hand and virtual hand illusion in non-invasive rehabilitation: technological improvements and their consequences. Neurosci. Biobehav. Rev. 44, 33–44 (2014)

    Article  Google Scholar 

  12. Botvinick, M., Cohen, J.: Rubber hands ‘feel’ touch that eyes see. Nature 391, 756 (1998)

    Article  Google Scholar 

  13. Haggard, P.: Conscious intention and motor cognition. Trends Cogn. Sci. 9(6), 290–295 (2005)

    Article  Google Scholar 

  14. Tsakiris, M., Haggard, P.: The rubber hand illusion revisited: visuotactile integration and self-attribution. J. Exp. Psychol.: Hum. Percept. Perform. 31(1), 80–91 (2005)

    Google Scholar 

  15. Makin, T.R., Holmes, N.P., Ehrsson, H.H.: On the other hand: dummy hands and peripersonal space. Behav. Brain Res. 191(1), 1–10 (2008)

    Article  Google Scholar 

  16. Longo, M.R., Schüür, F., Kammers, M.P.M., Tsakiris, M., Haggard, P.: What is embodiment? A psychometric approach. Cognition 107, 978–998 (2008)

    Article  Google Scholar 

  17. Christ, O., Elger, A., Schneider, K., Beckerle, P., Vogt, J., Rinderknecht, S.: Identification of haptic paths with different resolution and their effect on body scheme illusion in lower limbs. Technically Assisted Rehabilitation (2013)

    Google Scholar 

  18. Lenggenhager, B., Hilti, L., Brugger, P.: Disturbed body integrity and the “rubber foot illusion”. Neuropsychology 29(2), 205 (2015)

    Article  Google Scholar 

  19. Crea, S., D’Alonzo, M., Vitiello, N., Cipriani, C.: The rubber foot illusion. J. Neuro Eng. Rehabil. 12, 77 (2015)

    Article  Google Scholar 

  20. Flögel, M., Kalveram, K.T., Christ, O., Vogt, J.: Application of the rubber hand illusion paradigm: comparison between upper and lower limbs. Psychol. Res. 80(2), 298–306 (2015)

    Article  Google Scholar 

  21. Lenggenhager, B., Tadi, T., Metzinger, T., Blanke, O.: Video ergo sum: manipulating bodily self-consciousness. Science 317(5841), 1096–1099 (2007)

    Article  Google Scholar 

  22. Aspell, J.E., Lenggenhager, B., Blanke, O.: Keeping in touch with one self: multisensory mechanisms of self-consciousness. PLoS ONE 4(8), (2009)

    Google Scholar 

  23. Maselli, A., Slater, M.: The building blocks of the full body ownership illusion. Front. Hum. Neurosci. 7, 83 (2013)

    Article  Google Scholar 

  24. Bekrater-Bodmann, R., Foell, J., Diers, M., Flor, H.: The perceptual and neuronal stability of the rubber hand illusion across contexts and over time. Brain Res. 1452, 130–139 (2012)

    Article  Google Scholar 

  25. Beckerle, P., Castellini, C., Lenggenhager, B.: Robotic interfaces for cognitive psychology and embodiment research: a research roadmap. Wiley Interdisc. Rev.: Cogn. Sci. 10(2), e1486 (2019)

    Google Scholar 

  26. Ehrsson, H.H., Rosén, B., Stockselius, A., Ragnö, C., Köhler, P., Lundborg, G.: Upper limb amputees can be induced to experience a rubber hand as their own. Brain 131(12), 3443–3452 (2008)

    Article  Google Scholar 

  27. Caspar, E.A., de Beir, A., Magalhães Da Saldanha da Gama, P.A., Yernaux, F., Cleeremans, A., Vanderborght, B.: New frontiers in the rubber hand experiment: when a robotic hand becomes one’s own. Behav. Res. Methods 47(3), 744–755 (2015)

    Google Scholar 

  28. Romano, R., Caffa, E., Hernandez-Arieta, A., Brugger, P., Maravita, A.: The robot hand illusion: inducing proprioceptive drift through visuo-motor congruency. Neuropsychologia 70, 414–420 (2015)

    Article  Google Scholar 

  29. Pozeg, P., Galli, G., Blanke, O.: Those are your legs: the effect of visuo-spatial viewpoint on visuo-tactile integration and body ownership. Front. Psychol. 6 (2015)

    Google Scholar 

  30. Caspar, E.A., Cleeremans, A., Haggard, P.: The relationship between human agency and embodiment. Conscious. Cogn. 33, 226–236 (2015)

    Article  Google Scholar 

  31. Huynh, T.V., Bekrater-Bodmann, R., Fröhner, J., Vogt, J., Beckerle, P.: Robotic hand illusion with tactile feedback: unravelling the relative contribution of visuotactile and visuomotor input to the representation of body parts in space. PloS ONE 14(1), e0210,058 (2019)

    Google Scholar 

  32. Piryankova, I.V., Stefanucci, J.K., Romero, J., De La Rosa, S., Black, M.J., Mohler, B.J.: Can i recognize my body’s weight? the influence of shape and texture on the perception of self. ACM Trans. Appl. Percept. 11(3) (2014)

    Google Scholar 

  33. Christ, O., Jokisch, M., Preller, J., Beckerle, P., Rinderknecht, S., Wojtusch, J., von Stryk, O., Vogt, J.: User-centered prosthetic development: comprehension of amputees’ needs. Biomed. Eng. 57(S1), 1098–1101 (2012)

    Google Scholar 

  34. Beckerle, P., Christ, O., Schürmann, T., Vogt, J., von Stryk, O., Rinderknecht, S.: A human-machine-centered design method for (powered) lower limb prosthetics. Robot. Auton. Syst. 95, 1–12 (2017)

    Article  Google Scholar 

  35. Breakey, J.W.: Body image: the inner mirror. JPO: J. Prosthet. Orthot. 9(3), 107–112 (1997)

    Google Scholar 

  36. Gauthier-Gagnon, C., Grisé, M.C., D, P.: Enabling factors related to prosthetic use by people with transtibial and transfemoral amputation. Arch. Phys. Med. Rehabil. 80(6), 706–713 (1999)

    Google Scholar 

  37. Mori, M.: The uncanny valley. Energy 7(4), 33–35 (1970)

    Google Scholar 

  38. Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley [from the field]. IEEE Robot. Autom. Mag. 19(2), 98–100 (2012)

    Google Scholar 

  39. Poliakoff, E., Beach, N., Best, R., Howard, T., Gowen, E.: Can looking at a hand make your skin crawl? peering into the uncanny valley for hands. Perception 42(9), 998–1000 (2013)

    Article  Google Scholar 

  40. Bartneck, C., Kanda, T., Ishiguro, H., Hagita, N.: Is the uncanny valley an uncanny cliff? In: IEEE International Symposium on Robot and Human interactive Communication, pp. 368–373. IEEE (2007)

    Google Scholar 

  41. Rosenthal-von der Pütten, A.M., Krämer, N.C.: How design characteristics of robots determine evaluation and uncanny valley related responses. Comput. Hum. Behav. 36, 422–439 (2014)

    Google Scholar 

  42. Hendrix, C., Barfield, W.: Presence within virtual environments as a function of visual display parameters. Presence: Teleoperators Virtual Environ. 5(3), 274–289 (1996). https://doi.org/10.1162/pres.1996.5.3.274

  43. Sallnäs, E.L., Rassmus-Gröhn, K., Sjöström, C.: Supporting presence in collaborative environments by haptic force feedback. ACM Trans. Comput. Hum. Interact. 7(4), 461–476 (2000). https://doi.org/10.1145/365058.365086

    Article  Google Scholar 

  44. Lee, S., Kim, G.J.: Effects of haptic feedback, stereoscopy, and image resolution on performance and presence in remote navigation. Int. J. Hum. Comput. Stud. 66(10), 701–717 (2008). https://doi.org/10.1016/j.ijhcs.2008.05.001

    Article  Google Scholar 

  45. Heeter, C.: Being there: the subjective experience of presence. Presence: Teleoperators Virtual Environ. 1(2), 262–271 (1992). https://doi.org/10.1162/pres.1992.1.2.262

  46. Lombard, M., Jones, M.T.: Defining presence. In: Lombard, M., Biocca, F., Freeman, J., IJsselsteijn, W., Schaevitz, R.J. (eds.) Immersed in Media, pp. 13–34. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-10190-3.2

  47. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9(5), 624–637 (1993). https://doi.org/10.1109/70.258054

    Article  Google Scholar 

  48. Boessenkool, H., Abbink, D.A., Heemskerk, C.J.M., van der Helm, F.C.T., Wildenbeest, J.G.W.: A task-specific analysis of the benefit of haptic shared control during telemanipulation. IEEE Trans. Haptics 6(1), 2–12 (2013)

    Article  Google Scholar 

  49. Wildenbeest, J.G.W., Abbink, D.A., Heemskerk, C.J.M., van der Helm, F.C.T, Boessenkool, H.: The impact of haptic feedback quality on the performance of teleoperated assembly tasks. IEEE Trans. Haptics 6(2), 242–252 (2013). https://doi.org/10.1109/TOH.2012.19

  50. Pacchierotti, C., Tirmizi, A., Prattichizzo, D.: Improving transparency in teleoperation by means of cutaneous tactile force feedback. ACM Trans. Appl. Percept. 11(1), 1–16 (2014). https://doi.org/10.1145/2604969

    Article  Google Scholar 

  51. Pacchierotti, C., Meli, L., Chinello, F., Malvezzi, M., Prattichizzo, D.: Cutaneous haptic feedback to ensure the stability of robotic teleoperation systems. Int. J. Robot. Res. 34(14), 1773–1787 (2015). https://doi.org/10.1177/0278364915603135

    Article  Google Scholar 

  52. Slater, M.: A note on presence terminology. Presence Connect 3(3), 1–5 (2003)

    Google Scholar 

  53. Ratan, R.A., Hasler, B.: Self-presence standardized: introducing the self-presence questionnaire (SPQ). In: 12th Annual International Workshop on Presence (2009)

    Google Scholar 

  54. Biocca, F.: The Cyborg’s Dilemma: Progressive Embodiment in Virtual Environments, vol. 3. IEEE Computer Society Press, Los Alamitos, Calif. (1997). https://doi.org/10.1111/j.1083-6101.1997.tb00070.x

  55. Haans, A., Ijsselsteijn, W.A.: Embodiment and telepresence: toward a comprehensive theoretical framework. Interact. Comput. 24(4), 211–218 (2012). https://doi.org/10.1016/j.intcom.2012.04.010

    Article  Google Scholar 

  56. Kilteni, K., Groten, R., Slater, M.: The sense of embodiment in virtual reality. Presence: Teleoperators Virtual Environ. 21(4), 373–387 (2012). https://doi.org/10.1162/PRES.a.00124

  57. Wilson, M.: Six views of embodied cognition. Psychon. Bull. Rev. 9(4), 625–636 (2002)

    Article  Google Scholar 

  58. Beckerle, P., Salvietti, G., Unal, R., Prattichizzo, D., Rossi, S., Castellini, C., Hirche, S., Endo, S., Ben Amor, H., Ciocarlie, M., Mastrogiovanni, F., Argall, B.D., Bianchi, M.: A human-robot interaction perspective on assistive and rehabilitation robotics. Front. Neurorobot. 11(24) (2017)

    Google Scholar 

  59. Dollar, A.M., Herr, H.: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans. Robot. 24(1), 144–158 (2008)

    Article  Google Scholar 

  60. Windrich, M., Grimmer, M., Christ, O., Rinderknecht, S., Beckerle, P.: Active lower limb prosthetics: a systematic review of design issues and solutions. Biomed. Eng. Online 15(3), 5–19 (2016)

    Google Scholar 

  61. Yan, T., Cempini, M., Oddo, C.M., Vitiello, N.: Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 64, 120–136 (2015)

    Article  Google Scholar 

  62. Rognini, G., Blanke, O.: Cognetics: robotic interfaces for the conscious mind. Trends Cogn. Sci. 20(3), 162–164 (2016)

    Article  Google Scholar 

  63. Rosenbaum, D.A.: Human Motor Control. Academic press (2009)

    Google Scholar 

  64. Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)

    Article  Google Scholar 

  65. Santello, M., Baud-Bovy, G., Jörntell, H.: Neural bases of hand synergies. Front. Comput. Neurosci. 7, 23 (2013)

    Article  Google Scholar 

  66. Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo, D., Ernst, M., Moscatelli, A., Jörntell, H., Kappers, A.M.L., Kyriakopoulos, K., Albu-Schäffer, A., Castellini, C., Bicchi, A.: Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys. Life Rev. 17, 1–23 (2016)

    Article  Google Scholar 

  67. Wolpert, D.M.: Computational approaches to motor control. Trends Cogn. Sci. 1(6), 209–216 (1997)

    Article  Google Scholar 

  68. Iacoboni, M., Koski, L.M., Brass, M., Bekkering, H., Woods, R.P., Dubeau, M.C., Mazziotta, J.C., Rizzolatti, G.: Reafferent copies of imitated actions in the right superior temporal cortex. Proc. Nat. Acad. Sci. 98(24), 13995–13999 (2001)

    Article  Google Scholar 

  69. Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004)

    Article  Google Scholar 

  70. Pineda, J.A.: Sensorimotor cortex as a critical component of an ‘extended’ mirror neuron system: does it solve the development, correspondence, and control problems in mirroring? Behav. Brain Funct. 4(1), 47 (2008)

    Article  Google Scholar 

  71. Argall, B.D.: Modular and adaptive wheelchair automation. In: Proceedings of the International Symposium on Experimental Robotics (ISER) (2014)

    Google Scholar 

  72. Jain, S., Farshchiansadegh, A., Broad, A., Abdollahi, F., Mussa-Ivaldi, F.: Assistive robotic manipulation through shared autonomy and a body-machine interface. In: IEEE International Conference on Rehabilitation Robotics (2015)

    Google Scholar 

  73. Gopinath, D., Jain, S., Argall, B.D.: Human-in-the-loop optimization of shared autonomy in assistive robotics. IEEE Robot. Autom. Lett. 2(1), 247–254 (2017). https://doi.org/10.1109/LRA.2016.2593928

    Article  Google Scholar 

  74. Pilarski, P.M., Dawson, M.R., Degris, T., Carey, J.P., Chan, K.M., Hebert, J.S., Sutton, R.S.: Adaptive artificial limbs: a real-time approach to prediction and anticipation. IEEE Robot. Autom. Mag. 20(1), 53–64 (2013)

    Article  Google Scholar 

  75. Castellini, C., Artemiadis, P.K., Wininger, M., Ajoudani, A., Alimusaj, M., Bicchi, A., Caputo, B., Craelius, W., Došen, S., Englehart, K.B., Farina, D., Gijsberts, S., Godfrey, S.B., Hargrove, L.J., Ison, M., Kuiken, T.A., Markovic, M., Pilarski, P.M., Rupp, R., Scheme, E.: Proceedings of the first workshop on peripheral machine interfaces: going beyond traditional surface electromyography. Front. Neurorobot. 5(22), 1–17 (2014)

    Google Scholar 

  76. Castellini, C., Bongers, R.M., Nowak, M., van der Sluis, C.K.: Upper-limb prosthetic myocontrol: two recommendations. Front. Neurosci. 9(496) (2015). https://doi.org/10.3389/fnins.2015.00496

  77. Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile sensing - from humans to humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010)

    Article  Google Scholar 

  78. Cannata, C., Denei, S., Mastrogiovanni, F.: A framework for representing interaction tasks based on tactile data. In: IEEE International Symposium on Robot and Human Interactive Communication (2010)

    Google Scholar 

  79. Mengüç, Y., Park, Y.L., Pei, H., Vogt, D., Aubin, P.M., Winchell, E., Fluke, L., Stirling, L., Wood, R.J., Walsh, C.J.: Wearable soft sensing suit for human gait measurement. Int. J. Robot. Res. 33(14), 1748–1764 (2014)

    Article  Google Scholar 

  80. Lederman, S.J., Klatzky, R.L.: Haptic perception: a tutorial. Atten. Percept. Psychophys. 71(7), 1439–1459 (2009)

    Article  Google Scholar 

  81. Hatzfeld, C., Kern, T.A.: Engineering Haptic Devices. Springer (2016)

    Google Scholar 

  82. Mancini, F., Bauleo, A., Cole, J., Lui, F., Porro, C.A., Haggard, P., Iannetti, G.D.: Whole-body mapping of spatial acuity for pain and touch. Ann. Neurol. 75(6), 917–924 (2014)

    Article  Google Scholar 

  83. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002)

    Article  Google Scholar 

  84. Helbig, H.B., Ernst, M.O.: Haptic perception in interaction with other senses. In: Human Haptic Perception: Basics and Applications, pp. 235–249. Springer (2008)

    Google Scholar 

  85. Beckerle, P., Kõiva, R., Kirchner, E.A., Bekrater-Bodmann, R., Dosen, S., Christ, O., Abbink, D.A., Castellini, C., Lenggenhager, B.: Feel-good robotics: requirements on touch for embodiment in assistive robotics. Front. Neurorobot. 12, 84 (2018)

    Article  Google Scholar 

  86. Crucianelli, L., Metcalf, N.K., Fotopoulou, A., Jenkinson, P.M.: Bodily pleasure matters: velocity of touch modulates body ownership during the rubber hand illusion. Front. Psychol. 4, 703 (2013)

    Article  Google Scholar 

  87. Muscari, L., Seminara, L., Mastrogiovanni, F., Valle, M., Capurro, M., Cannata, C.: Real-time reconstruction of contact shapes for large-area robot skin. In: IEEE International Conference on Robotics and Automation (2013)

    Google Scholar 

  88. Denei, S., Mastrogiovanni, F., Cannata, C.: Towards the creation of tactile maps for robots and their use in robot contact motion control. Robot. Auton. Syst. 63, 293–308 (2015)

    Article  Google Scholar 

  89. Youssefi, S., Denei, S., Mastrogiovanni, F., Cannata, C.: A real-time data acquisition and processing framework for large-scale robot skin. Robot. Auton. Syst. 68, 86–103 (2015)

    Article  Google Scholar 

  90. Prattichizzo, D., Chinello, F., Pacchierotti, C., Malvezzi, M.: Towards wearability in fingertip haptics: a 3-dof wearable device for cutaneous force feedback. IEEE Trans. Haptics 6(4), 506–516 (2013)

    Article  Google Scholar 

  91. Pacchierotti, C., Sinclair, S., Solazzi, M., Frisoli, A., Hayward, V., Prattichizzo, D.: Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives. IEEE Trans. Haptics 10(4), 580–600 (2017)

    Article  Google Scholar 

  92. Jiang, N., Došen, S., Müller, K., Farina, D.: Myoelectric control of artificial limbs - is there a need to change focus? IEEE Signal Process. Mag. 29(5), 148–152 (2012)

    Google Scholar 

  93. Makin, T.R., de Vignemont, F., Faisal, A.A.: Neurocognitive barriers to the embodiment of technology. Nat. Biomed. Eng. 1(1), 1–3 (2017)

    Article  Google Scholar 

  94. Biddiss, E., Chau, T.: Upper-limb prosthetics: critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 86(12), 977–987 (2007)

    Article  Google Scholar 

  95. Patel, G.K., Dosen, S., Castellini, C., Farina, D.: Multichannel electrotactile feedback for simultaneous and proportional myoelectric control. J. Neural Eng. 13(5), 056,015 (2016)

    Google Scholar 

  96. Kim, K., Colgate, J.E.: Haptic feedback enhances grip force control of semg-controlled prosthetic hands in targeted reinnervation amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 20(6), 798–805 (2012)

    Article  Google Scholar 

  97. Christ, O., Beckerle, P., Preller, J., Jokisch, M., Rinderknecht, S., Wojtusch, J., von Stryk, O., Vogt, J.: The rubber hand illusion: maintaining factors and a new perspective in rehabilitation and biomedical engineering? Biomed. Eng. 57(S1), 1098–1101 (2012)

    Google Scholar 

  98. Bicchi, A., Gabiccini, M., Santello, M.: Modelling natural and artificial hands with synergies. Philos. Trans. R. Soc. B 366(1581), 3153–3161 (2011)

    Article  Google Scholar 

  99. Hayward, V.: Is there a ‘plenhaptic’ function? Philos. Trans. R. Soc. B 366(1581), 3115–3122 (2011)

    Article  Google Scholar 

  100. Bianchi, M., Serio, A.: Design and characterization of a fabric-based softness display. IEEE Trans. Haptics 8(2), 152–163 (2015)

    Article  Google Scholar 

  101. Bianchi, M., Valenza, G., Lanata, A., Greco, A., Nardelli, M., Bicchi, A., Scilingo, E.P.: On the role of affective properties in hedonic and discriminant haptic systems. Int. J. Soc. Robot. 1–9 (2016)

    Google Scholar 

  102. Bianchi, M., Valenza, G., Greco, A., Nardelli, M., Battaglia, E., Bicchi, A., Scilingo, E.: Towards a novel generation of haptic and robotic interfaces: integrating affective physiology in human-robot interaction. In: IEEE International Symposium on Robot and Human Interactive Communication, pp. 125–131. IEEE (2016)

    Google Scholar 

  103. Lo, A.C., Guarino, P.D., Richards, L.G., Haselkorn, J.K., Wittenberg, G.F., Federman, D.G., Ringer, R.J., Wagner, T.H., Krebs, H.I., Volpe, B.T., Bever, C.T., Bravata, D.M., Duncan, P.W., Corn, B.H., Maffucci, A.D., Nadeau, S.E., Conroy, S.S., Powell, J.M., Huang, G.D., Peduzzi, P.: Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362(19), 1772–1783 (2010)

    Article  Google Scholar 

  104. Torricelli, D., Rodriguez-Guerrero, C., Veneman, J.F., Crea, S., Briem, K., Lenggenhager, B., Beckerle, P.: Benchmarking wearable robots: challenges and recommendations from functional, userexperience and methodological perspectives (in revision)

    Google Scholar 

  105. Zhang, J., Fiers, P., Witte, K.A., Jackson, R.W., Poggensee, K.L., Atkeson, C.G., Collins, S.H.: Human-in-the-loop optimization of exoskeleton assistance during walking. Science 356(6344), 1280–1284 (2017)

    Article  Google Scholar 

  106. Schültje, F., Beckerle, P., Grimmer, M., Wojtusch, J., Rinderknecht, S.: Comparison of trajectory generation methods for a human-robot interface based on motion tracking in the Int\(^2\)Bot. In: IEEE International Symposium on Robot and Human Interactive Communication (2014)

    Google Scholar 

  107. De Beir, A., Caspar, E.A., Yernaux, F., Magalhães Da Saldanha da Gama, P.A., Vanderborght, B., Cleermans, A.: Developing new frontiers in the rubber hand illusion: design of an open source robotic hand to better understand prosthetics. In: IEEE International Symposium on Robot and Human Interactive Communication (2014)

    Google Scholar 

  108. Dummer, T., Picot-Annand, A., Neal, T., Moore, C.: Movement and the rubber hand illusion. Perception 38, 271–280 (2009)

    Article  Google Scholar 

  109. Kalckert, A., Ehrsson, H.H.: Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Front. Hum. Neurosci. 6(40) (2012)

    Google Scholar 

  110. Arata, J., Hattori, M., Ichikawa, S., Sakaguchi, M.: Robotically enhanced rubber hand illusion. IEEE Trans. Haptics (2014)

    Google Scholar 

  111. Hara, M., Nabae, H., Yamamoto, A., Higuchi, T.: A novel rubber hand illusion paradigm allowing active self-touch with variable force feedback controlled by a haptic device. IEEE Trans. Hum. Mach. Syst. 46(1), 78–87 (2016)

    Article  Google Scholar 

  112. Beckerle, P., Christ, O., Wojtusch, J., Schuy, J., Wolff, K., Rinderknecht, S., Vogt, J., von Stryk, O.: Design and control of a robot for the assessment of psychological factors in prosthetic development. In: IEEE International Conference on Systems, Man and Cybernetics (2012)

    Google Scholar 

  113. Penner, D., Abrams, A.M.H., Overath, P., Vogt, J., Beckerle, P.: Robotic leg illusion: system design and human-in-the-loop evaluation. IEEE Trans. Hum. Mach. Syst. (2019)

    Google Scholar 

  114. Beckerle, P., Bianchi, M., Castellini, C., Salvietti, G.: Mechatronic designs for a robotic hand to explore human body experience and sensory-motor skills: a Delphi study. Adv. Robot. 32(12), 670–680 (2018)

    Article  Google Scholar 

  115. Abrams, A.M.H., Beckerle, P.: A pilot study: advances in robotic hand illusion and its subjective experience. In: HRI Pioneers 2018 (ACM/IEEE International Conference on Human-Robot Interaction), pp. 289–290 (2018)

    Google Scholar 

  116. Beckerle, P., Schültje, F., Wojtusch, J., Christ, O.: Implementation, control and user-feedback of the Int\(^{2}\)Bot for the investigation of lower limb body schema integration. In: IEEE International Symposium on Robot and Human Interactive Communication (2014)

    Google Scholar 

  117. Schürmann, T., Overath, P., Christ, O., Vogt, J., Beckerle, P.: Exploration of lower limb body schema integration with respect to body-proximal robotics. In: IEEE International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (2015)

    Google Scholar 

  118. Lloyd, D.M.: Spatial limits on referred touch to an alien limb may reflect boundaries of visuo-tactile peripersonal space surrounding the hand. Brain Cogn. 64, 104–109 (2007)

    Article  Google Scholar 

  119. Preston, C.: The role of distance from the body and distance from the real hand in ownership and disownership during the rubber hand illusion. Acta Psychol. 142(2), 177–183 (2013)

    Article  Google Scholar 

  120. Constantini, M., Haggard, P.: The rubber hand illusion: sensitivity and reference frame for body ownership. Conscious. Cogn. 16(2), 229–240 (2007)

    Article  Google Scholar 

  121. Haans, A., IJsselsteijn, W.A., de Kort, Y.A.W.: The effect of similarities in skin texture and hand shape on perceived ownership of a fake limb. Body Image 5(4), 389–394 (2008)

    Google Scholar 

  122. Tsakiris, M., Longo, M.R., Haggard, P.: Having a body versus moving your body: neural signatures of agency and body-ownership. Neuropsychologia 48, 2740–2749 (2010)

    Article  Google Scholar 

  123. Choi, W., Li, L., Satoh, S., Hachimura, K.: Multisensory integration in the virtual hand illusion with active movement. BioMed Res. Int. 2016 (2016)

    Google Scholar 

  124. Escamilla, R.F.: Knee biomechanics of the dynamic squat exercise. Med. Sci. Sports Exerc. 33, 127–141 (2001)

    Article  Google Scholar 

  125. Christ, O., Weber, C., Borchert, I., Sorgatz, H.: Dissonance between visual and proprioceptive information as a moderator in experimental pain. J. Rehabil. Med. 43(9), 836 (2011)

    Google Scholar 

  126. Kalckert, A., Ehrsson, H.H.: The onset time of the ownership sensation in the moving rubber hand illusion. Front. Psychol. 8, 344 (2017)

    Article  Google Scholar 

  127. De Vignemont, F.: Embodiment, ownership and disownership. Conscious. Cogn. 20(1), 82–93 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Beckerle .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beckerle, P. (2021). Concepts, Potentials, and Requirements. In: Human-Robot Body Experience. Springer Series on Touch and Haptic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-38688-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38688-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38687-0

  • Online ISBN: 978-3-030-38688-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics