Skip to main content

Modelling Sea Ice and Melt Ponds Evolution: Sensitivity to Microscale Heat Transfer Mechanisms

  • Chapter
  • First Online:
Book cover Mathematical Approach to Climate Change and its Impacts

Part of the book series: Springer INdAM Series ((SINDAMS,volume 38))

Abstract

We present a mathematical model describing the evolution of sea ice and meltwater during summer. The system is described by two coupled partial differential equations for the ice thickness h and pond depth w fields. We test the sensitivity of the model to variations of parameters controlling fluid-dynamic processes at the pond level, namely the variation of turbulent heat flux with pond depth and the lateral melting of ice enclosing a pond. We observe that different heat flux scalings determine different rates of total surface ablations, while the system is relatively robust in terms of probability distributions of pond surface areas. Finally, we study pond morphology in terms of fractal dimensions, showing that the role of lateral melting is minor, whereas there is evidence of an impact from the initial sea ice topography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunke, E.C., Lipscomb, W.H., Turner, A.K.: Sea-ice models for climate study: retrospective and new directions. J. Glaciol. 56, 1162–1172 (2010)

    Article  Google Scholar 

  2. Notz, D.: Challenges in simulating sea ice in Earth System Models. WIREs Clim. Change 3, 509–526 (2012)

    Article  Google Scholar 

  3. Cattle, H., Crossley, J.: Modelling Arctic climate change. Philos. Trans. R. Soc. A 352, 1699 (1995)

    Google Scholar 

  4. Ebert, E.E., Schramm, J.L., Curry, J.A.: Disposition of solar radiation in sea ice and the upper ocean. J. Geophys. Res. 100(C8), 965–975 (1995)

    Article  Google Scholar 

  5. Maykut, G.A., McPhee, M.G.: Solar heating of the arctic mixed layer. J. Geophys. Res. 100(C12), 24691–24703 (1995)

    Article  Google Scholar 

  6. Tsamados, M., Feltham, D.L., Schröder, D., Flocco, D., Farrell, S.L., Kurtz, N., Laxon, S.W., Bacon, S.: Impact of variable atmospheric and oceanic form drag on simulations of arctic sea ice. J. Phys. Oceanogr. 44, 1329–1353 (2014)

    Article  Google Scholar 

  7. Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., Morales Maqueda, M.A.: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Model. 27, 33–53 (2009)

    Google Scholar 

  8. Vancoppenolle, M., Fichefet, T., Goosse, H.: Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 2. Importance of sea ice salinity variations. Ocean Model. 27, 54–69 (2009)

    Google Scholar 

  9. Mauritzen, C., Häkkinen, S.: Influence of sea ice on the thermohaline circulation in the Arctic-North Atlantic Ocean. Geophys. Res. Lett. 24, 3257–3260 (1997)

    Article  Google Scholar 

  10. Kwok, R., Cunningham, G.F., Wensnahan, M., Rigor, I., Zwally, H.J., Yi, D.: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res. 114, C07005 (2009)

    Article  Google Scholar 

  11. Stroeve, J.C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., Meier, W.N.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39, L16502 (2012)

    Article  Google Scholar 

  12. Laxon, S.W., Giles, K.A., Ridout, A.L., Wingham, D.J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., Davidson, M.: CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. Lett. 40, 732–737 (2013)

    Article  Google Scholar 

  13. Maykut, G.A., Untersteiner, N.: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. 76(6), 1550–1575 (1971)

    Article  Google Scholar 

  14. Ebert, E.E., Curry, J.A.: An intermediate one-dimensional thermodynamic sea ice model for investigating ice–atmosphere interactions, J. Geophys. Res. 98(C6), 10085–10109 (1993)

    Article  Google Scholar 

  15. Eisenman, I., Wettlaufer, J.S.: Nonlinear threshold behavior during the loss of Arctic sea ice. Proc. Natl. Acad. Sci. 106, 28–32 (2009)

    Article  MATH  Google Scholar 

  16. Steele, M.: Sea ice melting and floe geometry in a simple ice-ocean model. J. Geophys. Res. 97(C11), 17729–17738 (1992)

    Article  Google Scholar 

  17. Bitz, C.M., Lipscomb, W.H.: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res. 104(C7), 15669–15677 (1999)

    Article  Google Scholar 

  18. Freitag, J., Eicken, H.: Melt water circulation and permeability of Arctic summer sea ice derived from hydrological field experiments. J. Glaciol. 49, 349–358 (2003)

    Article  Google Scholar 

  19. Feltham, D.L., Untersteiner, N., Wettlaufer, J.S., Worster, M.G.: Sea ice is a mushy layer. Geophys. Res. Lett. 33, L14501 (2006)

    Article  Google Scholar 

  20. Wells, A.J., Wettlaufer, J.S., Orszag, S.A.: Nonlinear mushy-layer convection with chimneys: stability and optimal solute fluxes. J. Fluid Mech. 716, 203–227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Turner, A.K., Hunke, E.C.: Impacts of a mushy-layer thermodynamic approach in global sea-ice simulations using the CICE sea-ice model. J. Geophys. Res. Oceans 120(2), 1253–1275 (2015)

    Article  Google Scholar 

  22. Feltham, D.L.: Sea ice rheology. Annu. Rev. Fluid Mech. 40, 91–112 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hunke, E.C., Dukowicz, J.K.: An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr. 27(9), 1849–1867 (1997)

    Article  Google Scholar 

  24. Tsamados, M., Feltham, D.L., Wilchinsky, A.: Impact of a new anisotropic rheology on simulations of Arctic sea ice. J. Geophys. Res. Oceans 118(1), 91–107 (2013)

    Article  Google Scholar 

  25. Rabatel, M., Rampal, P., Carrassi, A., Bertino, L., Jones, C.K.R.T.: Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic. Cryosphere 12, 935–953 (2018)

    Article  Google Scholar 

  26. Steele, M., Zhang, J., Rothrock, D., Stern, H.: The force balance of sea ice in a numerical model of the Arctic Ocean. J. Geophys. Res. Oceans 102(C9), 21061–21079 (1997)

    Article  Google Scholar 

  27. Schröder, D., Vihma, T., Kerber, A., Brümmer, B.: On the parameterization of turbulent surface fluxes over heterogeneous sea ice surfaces. J. Geophys. Res. 108(C6), 3195 (2003)

    Article  Google Scholar 

  28. Rampal, P., Weiss, J., Marsan, D.: Positive trend in Arctic sea ice mean speed and deformation 1979–2007. J. Geophys. Res. Oceans 114, C05013 (2009)

    Google Scholar 

  29. Rampal, P., Weiss, J., Dubois, C., Campin, J.-M.: IPCC climate models do not capture the Arctic sea ice drift acceleration: consequences in terms of projected sea ice thinning and decline. J. Geophys. Res. Oceans 116, C00D07 (2011)

    Google Scholar 

  30. Petty, A.A., Feltham, D.L., Holland, P.R.: Impact of atmospheric forcing on Antarctic continental shelf water masses. J. Phys. Oceanogr. 43(5), 920–940 (2013)

    Article  Google Scholar 

  31. Heorton, H.D.B.S., Feltham, D.L., Tsamados, M.: Stress and deformation characteristics of sea ice in a high-resolution, anisotropic sea ice model. Philos. Trans. A Math. Phys. Eng. Sci. 376(2129), 20170349 (2018)

    Article  Google Scholar 

  32. Hunke, E.C., Notz, D., Turner, A.K., Vancoppenolle, M.: The multiphase physics of sea ice: a review for model developers. Cryosphere 5, 989–1009 (2011)

    Article  Google Scholar 

  33. Massonnet, F., Vancoppenolle, M., Goosse, H., Docquier, D., Fichfet, T., Blanchard-Wrigglesworth, E.: Arctic sea-ice change tied to its mean state through thermodynamic processes. Nat. Clim. Change 8, 599–603 (2018)

    Article  Google Scholar 

  34. Fetterer, F., Untersteiner, N.: Observations of melt ponds on Arctic sea ice. J. Geophys. Res. 103(C11), 24821–24835 (1998)

    Article  Google Scholar 

  35. Perovich, D.K., Tucker III, W.B., Ligett, K.A.: Aerial observations of the evolution of ice surface conditions during summer. J. Geophys. Res. 107(C10), 8048 (2002)

    Article  Google Scholar 

  36. Hanesiak, J.M., Barber, D.G., De Abreu, R.A., Yackel, J.J.: Local and regional albedo observations of arctic first-year sea ice during melt ponding. J. Geophys. Res. 106(C1), 1005–1016 (2001)

    Article  Google Scholar 

  37. Perovich, D.K., Grenfell, T.C., Light, B., Hobbs, P.V.: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res. 107(C10), 8044 (2002)

    Article  Google Scholar 

  38. Flocco, D., Schroeder, D., Feltham, D.L., Hunke, E.C.: Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J. Geophys. Res. 117, C09032 (2012)

    Article  Google Scholar 

  39. Schröder, D., Feltham, D.L., Flocco, D., Tsamados, M.: September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nat. Clim. Change 4(5), 353–357 (2014)

    Article  Google Scholar 

  40. Taylor, P.D., Feltham, D.L.: A model of melt pond evolution on sea ice. J. Geophys. Res. 109, C12007 (2004)

    Article  Google Scholar 

  41. Skyllingstad, E.D., Paulson, C.A.: A numerical simulations of melt ponds. J. Geophys. Res. 112, C08015 (2007)

    Article  Google Scholar 

  42. Rabbanipour Esfahani, B., Hirata, S.C., Berti, S., Calzavarini, E.: Basal melting driven by turbulent thermal convection. Phys. Rev. Fluids 3, 053501 (2018)

    Article  Google Scholar 

  43. Lüthje, M., Feltham, D.L., Taylor, P.D., Worster, M.G.: Modeling the summertime evolution of sea–ice melt ponds. J. Geophys. Res. 111, C02001 (2006)

    Article  Google Scholar 

  44. Lüthje, M., Pedersen, L.T., Reeh, N., Greuell, W.: Modelling the evolution of supraglacial lakes on the West Greenland ice-sheet margin. J. Glaciol. 52(179), 608–618 (2006)

    Article  Google Scholar 

  45. Skyllingstad, E.D., Paulson, C.A., Perovich, D.K.: Simulation of melt pond evolution on level ice. J. Geophys. Res. 114, C12019 (2009)

    Article  Google Scholar 

  46. Scott, F., Feltham, D.L.: A model of the three-dimensional evolution of Arctic melt ponds on first-year and multiyear sea ice. J. Geophys. Res. 115, C12064 (2010)

    Article  Google Scholar 

  47. Thorndike, A.S., Rothrock, D.A., Maykut, G.A., Colony, R.: The thickness distribution of sea ice. J. Geophys. Res. 80(33), 4501–4513 (1975)

    Article  Google Scholar 

  48. Hunke, E.C., Lipscomb, W.H.: CICE: The Los Alamos Sea Ice Model. Documentation and software user’s manual version 4.0. Tech. Rep. LA-CC-06-012. T-3 Fluid Dyn. Group, Los Alamos Natl. Lab., Los Alamos, NM (2008)

    Google Scholar 

  49. Vancoppenolle, M., Bouillon, S., Fichefet, T., Goosse, H., Lecomte, O., Morales Maqueda, M.A., Madec, G.: The Louvain-la-Neuve sea ice model. Notes du pole de modélisation, Institut Pierre-Simon Laplace (IPSL), Paris (2012)

    Google Scholar 

  50. Flocco, D., Feltham, D.L.: A continuum model of melt pond evolution on Arctic sea ice. J. Geophys. Res. 112, C08016 (2007)

    Article  Google Scholar 

  51. Flocco, D., Feltham, D.L., Turner, A.K.: Incorporation of a physically based melt pond scheme into the sea ice component of a climate model. J. Geophys. Res. 114, C08012 (2010)

    Google Scholar 

  52. Ahlers, G., Grossmann, S., Lohse, D.: Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81, 503 (2009)

    Article  Google Scholar 

  53. Kim, J.-H., Moon, W., Wells, A.J., Wilkinson, J.P., Langton, T., Hwang, B., Granskog, M.A., Rees Jones, D.W.: Salinity control of thermal evolution of late summer melt ponds on Arctic sea ice. Geophys. Res. Lett. 45 (2018). https://doi.org/10.1029/2018GL078077

  54. Grossmann, S., Lohse, D.: Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Malkus, M.V.R.: The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225, 196 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  56. Rallabandi, B., Zheng, Z., Winton, M., Stone, H.A.: Formation of sea ice bridges in narrow straits in response to wind and water stresses. J. Geophys. Res. Oceans 122(7), 5588–5610 (2017)

    Article  Google Scholar 

  57. Domaradzki, J.A., Metcalfe, R.W.: Direct numerical simulations of the effects of shear on turbulent Rayleigh-Bénard convection. J. Fluid Mech. 193, 499 (1988)

    Article  Google Scholar 

  58. Scagliarini, A., Gylfason A., Toschi, F.: Heat-flux scaling in turbulent Rayleigh-Bénard convection with an imposed longitudinal wind. Phys. Rev. E 89, 043012 (2014)

    Article  Google Scholar 

  59. Prandtl, L.: Bericht über die Entstehung der Turbulenz. Z. Angew. Math. Mech. 5, 136–139 (1925)

    Article  MATH  Google Scholar 

  60. Tsamados, M., Feltham, D.L., Petty, A.A., Schröder D., Flocco, D.: Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model. Philos. Trans. R. Soc. A 373, 20140167 (2015)

    Article  Google Scholar 

  61. Eicken, H., Krouse, H.R., Kadko, D., Perovich, D.K.: Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res. 107(C10), 8046 (2002)

    Article  Google Scholar 

  62. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Pergamon Press, Oxford (1987)

    Google Scholar 

  63. Marche, F.: Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech. B Fluids 26, 49–63 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931–980 (1997)

    Article  Google Scholar 

  65. Hvidegaard, S.M., Forsberg, R.: Sea-ice thickness from airborne laser altimetry over the Arctic Ocean north of Greenland. Geophys. Res. Lett. 29(20), 1952 (2002)

    Article  Google Scholar 

  66. Hoshen, J., Kopelman, R.: Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm. Phys. Rev. B. 14, 3438–3445 (1976)

    Google Scholar 

  67. Moritz, R.E., Curry, J.A., Thorndike, A.S., Untersteiner, N.: SHEBA a Research Program on the Surface Heat Budget of the Arctic Ocean. Rep. 3, 34 pp., Arctic Syst. Sci.: Ocean-Atmos.-Ice Interact. (1993)

    Google Scholar 

  68. Moritz, R.E., Perovich, D.K. (eds.): Surface Heat Budget of the Arctic Ocean, Science Plan, ARCSS/OAII. Rep. 5, 64 pp., Univ. of Wash., Seattle (1996)

    Google Scholar 

  69. Perovich, D.K., Grenfell, T.C., Light, B., Elder, B.C., Harbeck, J., Polashenski, C., Tucker III, W.B., Stelmach, C.: Transpolar observations of the morphological properties of Arctic sea ice. J. Geophys. Res. 114, C00A04 (2009)

    Google Scholar 

  70. Ma, Y.-P., Sudakov, I., Strong, C., Golden, K.M.: Ising model for melt ponds on Arctic sea ice (2014). arXiv:1408.2487

    Google Scholar 

  71. Popović, P., Cael, B.B., Silber, M., Abbot, D.S.: Simple rules govern the patterns of arctic sea ice melt ponds. Phys. Rev. Lett. 120, 148701 (2018)

    Article  Google Scholar 

  72. Hohengger, C., Alali, B., Steffen, K.R., Perovich, D.K., Golden, K.M.: Transition in the fractal geometry of Arctic melt ponds. Cryosphere 6, 1157–1162 (2012)

    Article  Google Scholar 

  73. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1982)

    MATH  Google Scholar 

  74. Cheng, Q.: The perimeter-area fractal model and its application to geology. Math. Geol. 27, 69–84 (1995)

    Article  Google Scholar 

  75. Grassberger, P.: Generalized dimensions of strange attractors. Phys. Lett. 97A(6), 227–230 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

AS and DM acknowledge financial support from the National Group of Mathematical Physics of the Italian National Institute of High Mathematics (GNFM-INdAM). EC acknowledge supports form the French National Agency for Research (ANR) under the grant SEAS (ANR-13-JS09-0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Scagliarini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scagliarini, A., Calzavarini, E., Mansutti, D., Toschi, F. (2020). Modelling Sea Ice and Melt Ponds Evolution: Sensitivity to Microscale Heat Transfer Mechanisms. In: Cannarsa, P., Mansutti, D., Provenzale, A. (eds) Mathematical Approach to Climate Change and its Impacts. Springer INdAM Series, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-38669-6_6

Download citation

Publish with us

Policies and ethics