Skip to main content

A Model to Describe the Response of Arctic Sea Ice

  • Chapter
  • First Online:
Mathematical Approach to Climate Change and its Impacts

Part of the book series: Springer INdAM Series ((SINDAMS,volume 38))

  • 577 Accesses

Abstract

In this paper we develop a model for the flow of Arctic sea ice within the context of the theory of interacting continua that takes into account the change of phase between the two constituents, ice and water. After documenting the general balance laws for mass, linear and angular momentum, energy, the second law of thermodynamics and the volume additivity constraint, we discuss the specific constitutive relations that are to be used for the various quantities that appear in the balance laws. Ice is modeled as a non-Newtonian fluid that is a generalization of the usual model due to Glen to take into account the ability of ice to develop normal stress differences in simple shear flow, while water is modeled as a Navier–Stokes fluid. Constitutive relations are discussed for the change of phase, the interaction forces such as the drag, etc. In order to make the problem amenable to analysis, we simplify the governing equations, keeping the quintessential features of the problem of interest in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, homogenization does not refer to any specific mathematical process of mathematical homogenization procedure but refers to the sense in which we think of a body as a single continuum though clearly at the sub-atomic level the body is really not a three dimensional continuum. Each constituent of the mixture is assumed to be present at each point in the region occupied by the mixture, we do not have regions where we have only one constituent and not the others.

References

  1. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209–244 (1976)

    Article  MathSciNet  Google Scholar 

  2. Atkin, R.J., Craine, R.E.: Theories of mixtures: applications. J. Inst. Math. Appl. 17, 153–207 (1976)

    Article  MathSciNet  Google Scholar 

  3. Bedford, A., Drumheller, D.S.: Theory of immiscible and structured mixtures. Int. J. Eng. Sci. 21, 863–960 (1983)

    Article  Google Scholar 

  4. Bowen, R.: In: Eringen, A.C. (ed.) Theory of Mixtures in Continuum Physics III. Academic, New York (1976)

    Google Scholar 

  5. Bushuk, M., Giannakis, D., Majda, A.J.: Arctic sea ice reemergence: the role of large-scale oceanic and atmospheric variability. J. Climate 28, 5477–5509 (2015)

    Article  Google Scholar 

  6. Coleman, B.D., Noll, W.: An approximation theorem for functionals, with applications in continuum mechanics. Arch. Ration. Mech. Anal. 6, 355–370 (1960)

    Article  MathSciNet  Google Scholar 

  7. Darcy, W.: Les Fontaines Publiques de La Ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  8. Dunn, J.E., Rajagopal, K.R.: Fluids of differential type: critical review and thermodynamic analysis. Int. J. Eng. Sci. 33, 689–729 (1995)

    Article  MathSciNet  Google Scholar 

  9. Fick, A.: Ueber diffusion. Ann. Phys. 94, 59–86 (1855)

    Article  Google Scholar 

  10. Glen, J.W.: The flow law of ice: a discussion of assumptions made in glacier theory, their experimental foundations and consequences, in the Physics of the Movement of Ice. Int. J. Assoc. Sci. Hydrol. Publ. 47, 171–183 (1958)

    Google Scholar 

  11. Gray, J.M.N.T., Morland, L.W.: A two-dimensional model for the dynamics of sea ice. Philos. Trans. Phys. Sci. Eng. 347(1682), 219–290 (1994)

    MATH  Google Scholar 

  12. Green, A.E., Naghdi, P.M.: On basic equations for mixtures. Q. J. Mech. Appl. Math. XXII, 427–438 (1969)

    Google Scholar 

  13. Hunke, E.C., Dukowicz, J.K.: An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr. 27, 1849–1867 (1997)

    Article  Google Scholar 

  14. Hutter, K.: Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets. D. Reidell, Norwell (1983)

    Google Scholar 

  15. Hutter, K., Blatter, H., Funk, M.: A model computation of moisture content in polythermal ice sheets. J. Geophys. Res. 93, 12205–12214 (1988)

    Article  Google Scholar 

  16. Johnson, G., Massoudi, M., Rajagopal, K.R.: A review of interaction mechanisms in fluid-solid flows, DOE/PETCLTR90/9, DE 91 0000941, Pittsburgh, PA (1991)

    Google Scholar 

  17. Kelly, R.J., Morland, L., Morris, E.M.: A three phase mixture model for melting snow. In: Modelling Snowmelt-induced Processes, vol. 155, pp. 17–26. IAHS Publications, Wallingford (1986)

    Google Scholar 

  18. Kjartanson, B.H., Shields, D.H., Domaschuk, L., Man, C.S.: The creep of ice measured with the pressuremeter. Can. Geotech. J. 25, 250–261 (1988)

    Article  Google Scholar 

  19. Man, C.S., Sun, Q.X.: On the significance of normal stress effects in the flow of glaciers. J. Glaciol. 33, 268–273 (1987)

    Article  Google Scholar 

  20. Marshall, S.J., Clarke, G.K.C.: Sensitivity analyses of coupled ice sheet/ice stream dynamics on the EISMINT experimental ice block. Ann. Geol. 23, 336–347 (1996)

    Google Scholar 

  21. Marshall, S.J., Clarke, G.K.C.: A continuum mixture model for ice stream thermomechanics in the Laurentide ice sheet. J. Geophys. Res. 102, 20599–20613 (1997)

    Article  Google Scholar 

  22. Mills, N.: Incompressible mixtures of newtonian fluids. Int. J. Eng. Sci. 4, 97–112 (1966)

    Article  Google Scholar 

  23. Morland, L.: A simple constitutive theory for fluid saturated porous solid. J. Geophys. Res. 77, 890–900 (1972)

    Article  Google Scholar 

  24. Morland, L.: A theory of slow fluid flow through a thermoelastic porous solid. Geophys. J. Res. Astron. Soc. 55, 393–410 (1978)

    Article  Google Scholar 

  25. Morland, L., Kelly, R.J., Morris, E.M.: A mixture theory for phase-changing snowpack. Cold Reg. Sci. Technol. 17, 271–285 (1990)

    Article  Google Scholar 

  26. Morris, E.M.: Modelling the flow of mass and energy within a snowpack for hydrological forecasting. Ann. Glaciol. 4, 198–203 (1986)

    Article  Google Scholar 

  27. Perovich, D.K., Richter-Menge, J.R.: Loss of sea ice in the Arctic. Annu. Rev. Marine Sci. 1, 417–441 (2009)

    Article  Google Scholar 

  28. Prasad, S.C., Rajagopal, K.R.: On the diffusion of fluids through solids undergoing large deformations. Math. Mech. Solids 11, 91–105 (2006)

    Article  MathSciNet  Google Scholar 

  29. Rajagopal, K.R.: On an hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Methods Models Appl. Sci. 17, 215–252 (2007)

    Article  MathSciNet  Google Scholar 

  30. Rajagopal, K.R., Srinivasa, A.R.: A thermodynamic framework for rate type fluid models. J. Non-Newtonian Fluid Mech. 88, 207–227 (2000)

    Article  Google Scholar 

  31. Rajagopal, K.R., Srinivasa, A.R.: Thermomechanics of materials that have multiple natural configurations: Part 1 Viscoelasticity and classical plasticity. Z. Angew. Math. Phys. 55, 861–893 (2004)

    Article  MathSciNet  Google Scholar 

  32. Rajagopal, K.R., Srinivasa, A.R.: On the thermodynamics of fluids defined by implicit constitutive relations. Z. Angew. Math. Phys. 59, 715–729 (2008)

    Article  MathSciNet  Google Scholar 

  33. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World Scientific, Singapore (1995)

    Book  Google Scholar 

  34. Rajagopal, K.R., Wineman, A.S., Gandhi, M.V.: On boundary conditions for a certain class of problems in mixture theory. Int. J. Eng. Sci. 24, 1453–1463 (1986)

    Article  MathSciNet  Google Scholar 

  35. Rivlin, R.S., Ericksen, J.L.: Stress deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)

    MathSciNet  MATH  Google Scholar 

  36. Samohyl, I.: Thermodynamics of Irreversible processes in Fluid Mixtures. Teubner, Leipzig (1987)

    MATH  Google Scholar 

  37. Shi, J.J., Rajagopal, K.R., Wineman, A.S.: Application of the theory of interacting continua to the diffusion of a fluid through a non-linear elastic media. Int. J. Eng. Sci. 19, 871–889 (1981)

    Article  Google Scholar 

  38. Truesdell, C.: Sulla basi della termomeccanica, Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, Mathematiche e Naturali (8) 22, 33–88 (1957)

    Google Scholar 

  39. Truesdell, C.: Sulla basi della termomeccanica, Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, Mathematiche e Naturali (8) 22, 158–166 (1957)

    Google Scholar 

  40. Truesdell, C.: Rational Thermodynamics. Springer, New York (1984)

    Book  Google Scholar 

  41. Truesdell, C., Toupin, R.: The classical field theories. In: Flugge, W. (ed.) Handbuch der Physik, vol. III. Springer, New York (1960)

    Google Scholar 

  42. Ziegler, H.: Some extremum principles in irreversible thermodynamics. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. 4. North Holland Publishing Company, New York (1963)

    Google Scholar 

  43. Ziegler, H.: An Introduction to Thermodynamics. North-Holland Series in Applied Mathematics and Mechanics, 2nd edn. North-Holland, Amsterdam (1983)

    Google Scholar 

  44. Ziegler, H., Wehrli, C.: The derivation of constitutive equations from the free energy and the dissipation function. In: Wu, T.Y., Hutchinson, J.W. (eds.) Advances in Applied Mechanics, vol. 25, pp. 183–238. Academic Press, New York (1987)

    Google Scholar 

Download references

Acknowledgement

KRR thanks the Office of Naval Research for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Malek-Madani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malek-Madani, R., Rajagopal, K.R. (2020). A Model to Describe the Response of Arctic Sea Ice. In: Cannarsa, P., Mansutti, D., Provenzale, A. (eds) Mathematical Approach to Climate Change and its Impacts. Springer INdAM Series, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-38669-6_5

Download citation

Publish with us

Policies and ethics