Skip to main content

Justification of Influence of the Form of Nozzle and Active Surface of Bernoulli Gripping Devices on Its Operational Characteristics

  • Conference paper
  • First Online:

Abstract

The advantages of application on production of radial flow gripping devices of industrial robots are justified. The mathematical model for numerical modeling of dynamics of air flow in nozzle of radial flow gripping devices and in radial interval between its active surface and surface of object of manipulation is presented. For this purpose it is used averaging on Reynolds of Navier-Stokes’s equation of dynamics of viscous gas, SST model of turbulence and γ-model of laminar and turbulent transition. Technical requirements to design of radial flow grippers are defined and options of their constructive improvement are offered. The formula for calculation of the minimum diameter of nozzle of radial flow gripper is offered. By the results of numerical modeling in the program Ansys-CFX environment influence of geometrical parameters of nozzle and active surface of radial flow gripping devices on the nature of distribution of pressure in radial interval and its upward force is defined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li, X., Kagawa, T.: Development of a new noncontact gripper using swirl vanes. Robot. Comput. Integr. Manuf. 29(1), 63–70 (2013)

    Article  Google Scholar 

  2. Li, X., Kagawa, T.: Theoretical and experimental study of factors affecting the suction force of a bernoulli gripper. J. Eng. Mech. 140(9), 04014066 (2014)

    Article  Google Scholar 

  3. Festo AG & Co, Bernoulli gripper OGGB. https://www.festo.com/net/sv_se/SupportPortal/default.aspx?cat=4564

  4. SMC. http://www.smcworld.com/products/en/vacuum/s.do?ca_id=1036

  5. Aventics. Non-contact transport system. https://www.aventics.com/en/products/pneumatic-products/vacuum-technology/non-contact-transport-system/

  6. Schmalz, J., Schmalz, J.: Floating Suction Cups SBS > Special Grippers. https://www.schmalz.com/en/vacuum-technology-for-automation/vacuum-components/special-grippers/floating-suction-cups/floating-suction-cups-sbs

  7. Ozcelik, B., Erzincanli, F., Findik, F.: Evaluation of handling results of various materials using a non-contact end-effector. Ind. Robot Int. J. 30(4), 363–369 (2003)

    Article  Google Scholar 

  8. Stühm, K., Tornow, A., Schmitt, J., Grunau, L., Dietrich, F., Dröder, K.: A novel gripper for battery electrodes based on the Bernoulli-principle with integrated exhaust air compensation. Procedia CIRP 23, 161–164 (2014)

    Article  Google Scholar 

  9. Contactless handling of objects [Text]: pat. 6601888 United States: Int. Cl.7: B25J 15/06 Lon McIlwraith, Andrew Christie; Assignee: Creo Inc., Burnaby (CA) – Appl. No.: 09/810408; filed 19.03.2001; date of patent 05.08.2003; priority 19.09.2002, US 2002/0130524 A1

    Google Scholar 

  10. Erzincanli, F., Sharp, J.M., Erhal, S.: Design and operational considerations of a non-contact robotic handling system for non-rigid materials. Int. J. Mach. Tools Manuf 38(4), 353–361 (1998)

    Article  Google Scholar 

  11. Davis, S., Gray, J.O., Caldwell, G.: An end effector based on the Bernoulli principle for handling sliced fruit and vegetables. J. Robot. Comput. Integr. Manuf. 24(2), 249–257 (2008)

    Article  Google Scholar 

  12. Ozcelik, B., Erzincanli, F.: A non-contact end-effector for the handling of garments. Robotica 20(4), 447–450 (2002)

    Article  Google Scholar 

  13. Savkiv, V., Mykhailyshyn, R., Fendo, O., Mykhailyshyn, M.: Orientation modeling of bernoulli gripper device with off-centered masses of the manipulating object. Procedia Eng. 187, 264–271 (2017)

    Article  Google Scholar 

  14. Savkiv, V., Mykhailyshyn, R., Duchon, F., Mikhailishin, M.: Modeling of Bernoulli gripping device orientation when manipulating objects along the arc. Int. J. Adv. Rob. Syst. 15(2), 1729881418762670 (2018)

    Google Scholar 

  15. Mykhailyshyn, R., Savkiv, V., Duchon, F., Koloskov, V., Diahovchenko, I.: Analysis of frontal resistance force influence during manipulation of dimensional objects. In: 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), pp. 301–305 (2018)

    Google Scholar 

  16. Mykhailyshyn, R., Savkiv, V., Mikhalishin, M., Duchon, F.: Experimental research of the manipulatiom process by the objects using bernoulli gripping devices. In: Young Scientists Forum on Applied Physics and Engineering, pp. 8–11 (2017)

    Google Scholar 

  17. Mykhailyshyn, R., Savkiv, V., Duchon, F., Maruschak, P., Prentkovskis, O.: Substantiation of bernoulli grippers parameters at non-contact transportation of objects with a displaced center of mass. In: Transport Means - Proceedings of the International Conference, pp. 1370–1375 (2018)

    Google Scholar 

  18. Savkiv, V., Mykhailyshyn, R., Duchon, F., Fendo, O.: Justification of design and parameters of Bernoulli–vacuum gripping device. Int. J. Adv. Rob. Syst. 14(6), 1729881417741740 (2017)

    Google Scholar 

  19. Savkiv, V., Mykhailyshyn, R., Duchon, F., Mikhalishin, M.: Energy efficiency analysis of the manipulation process by the industrial objects with the use of Bernoulli gripping devices. J. Electr. Eng. 68(6), 496–502 (2017)

    Google Scholar 

  20. Mykhailyshyn, R., Savkiv, V., Duchon, F., Koloskov, V., Diahovchenko, I.: Investigation of the energy consumption on performance of handling operations taking into account parameters of the grasping system. In: 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), pp. 295–300 (2018)

    Google Scholar 

  21. Wagner, M., Chen, X., Nayyerloo, M., Wang, W., Chase, J.G.: A novel wall climbing robot based on Bernoulli effect. In: 2008 IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications, pp. 210–215 (2008)

    Google Scholar 

  22. Snegiryov, A.Y.: High-performance computing in technical physics. Numerical Simulation of Turbulent Flows, S. Petersburg, Polytechnic University Publ. (2009)

    Google Scholar 

  23. Garbaruk, A.V.: Modern approaches to modeling turbulence. St. Petersburg, Polytechnic University Publ. (2016)

    Google Scholar 

  24. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  25. Menter, F.R., Esch, T., Kubacki, S.: Transition modelling based on local variables. In: Engineering Turbulence Modelling and Experiments, pp. 555–564 (2002)

    Google Scholar 

  26. Menter, F.R., Langtry, R.B., Vӧlker, S.: Transition modelling for general purpose CFD codes. J. Flow Turbul. Combust. 77, 277–303 (2006)

    Article  Google Scholar 

  27. Menter, F.R., Smirnov, P.E., Liu, T., Avancha, R.: A one-equation local correlation-based transition model. Flow Turbul. Combust. 95(4), 583–619 (2015). https://doi.org/10.1007/s10494-015-9622-4

    Article  Google Scholar 

  28. Savkiv, V., Mykhailyshyn, R., Duchon, F.: Gasdynamic analysis of the Bernoulli grippers interaction with the surface of flat objects with displacement of the center of mass. Vacuum 159, 524–533 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Mykhailyshyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Savkiv, V., Mykhailyshyn, R., Duchon, F., Maruschak, P. (2020). Justification of Influence of the Form of Nozzle and Active Surface of Bernoulli Gripping Devices on Its Operational Characteristics. In: Gopalakrishnan, K., Prentkovskis, O., Jackiva, I., Junevičius, R. (eds) TRANSBALTICA XI: Transportation Science and Technology. TRANSBALTICA 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-38666-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38666-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38665-8

  • Online ISBN: 978-3-030-38666-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics