Skip to main content

Part of the book series: Food Engineering Series ((FSES))

Abstract

Resistant starch (RS) is starch that is not converted into glucose during its passage through the small intestine. There are five types of RS and four of those are used as food ingredients (RS2, RS3, RS4, and RS5). RS2 is native, uncooked/ungelatinized starch granule and is resistant to α-amylase attack because of the granule organized, semi-crystalline structures. RS3 is retrograded starch (primarily amylose) that is resistant to α-amylase attack due to its crystalline nature. Several processes are employed to enhance its yields, increasing the amounts of linear starch chains of crystallizable size. RS4 is starch that has been chemically modified to an extent that prevents binding of starch polysaccharide molecules in the active site of α-amylase (substitution) or that strongly inhibits granule swelling and solubilization (cross-linking), or whose molecular structures have been altered by other chemical reagents or enzymes. RS5 products are partially crystalline amylose-lipid complexes. RS products have been successfully incorporated into bakery and beverage products. The health benefits achieved when a RS product replaces some of the flour or starch in a food formulation are related to a decreased glycemic response and an increased production of butyric acid in the colon, which maintains or improves colon health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai Y, Hasjim J, Jane J-l (2013a) Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydr Polym 92(1):120–127

    Article  CAS  PubMed  Google Scholar 

  • Ai Y, Nelson B, Birt DF, Jane J-l (2013b) In vitro and in vivo digestion of octenyl succinic starch. Carbohydr Polym 98(2):1266–1271

    Article  CAS  PubMed  Google Scholar 

  • Al-Tamini EK, Seib PA, Snyder BS, Haub MD (2010) Consumption of cross-linked resistant starch (RS4XL) on glucose and insulin responses in humans. J Nutr Metab 2010:651063

    Google Scholar 

  • Arimi JM, Duggan E, O’Riordan ED, O’Sullivan M, Lyng JG (2008) Microwave expansion of imitation cheese containing resistant starch. J Food Eng 88(2):254–262

    Article  Google Scholar 

  • Ashwar BA, Gani A, Shah A, Wani IA, Masoodi FA (2016) Preparation, health benefits and applications of resistant starch – a review. Starch/Stärke 68(3–4):287–301

    Article  CAS  Google Scholar 

  • Auerbach MH, Mitchell H, Moppett FK (2011) Polydextrose. In: Nabors LO (ed) Alternative sweeteners, 4th edn. CRC Press, Boca Raton, pp 489–505

    Chapter  Google Scholar 

  • Aziz AA, Kenny LS, Goulet B, Abdel-Aal E-S (2009) Dietary starch type affects body weight and glycemic control in freely fed but not energy-restricted obese rats. J Nutr 139(10):1881–1889

    Article  CAS  PubMed  Google Scholar 

  • Baixauli R, Salvador A, Fiszman SM (2008a) Texture and colour changes during storage and sensory shelf life of muffins containing resistant starch. Eur Food Res Technol 226:523–530

    Article  CAS  Google Scholar 

  • Baixauli R, Salvador A, Martínez-Cervera S, Fiszman SM (2008b) Distinctive sensory features introduced by resistant starch in baked products. LWT–Food Sci Technol 41(10):1927–1933

    Article  CAS  Google Scholar 

  • Baixauli R, Salvador A, Fiszman SM (2008c) Muffins with resistant starch: baking performance in relation to the rheological properties of the batter. J Cereal Sci 47:502–509

    Article  Google Scholar 

  • Baixauli R, Sanz T, Salvador A, Fiszman SM (2008d) Muffins with resistant starch: baking performance in relation to rheological properties of the batter. J Cereal Sci 47(3):502–509

    Article  Google Scholar 

  • Bello-Pérez LA, Rodrigues-Ambriz, Agama-Acevedo E, Sanchez-Rivera MM (2009) Solubilization effects on molecular weights of amylose and amylopectins of normal maize and barley starches. Cereal Chem 86(6):701–705

    Article  CAS  Google Scholar 

  • Belobrajdic DP, King RA, Christophersen CT, Bird AR (2012) Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats. Nutr Metab 9(1):93

    Article  CAS  Google Scholar 

  • BeMiller JN (1967) Acid-catalyzed hydrolysis of glycosides. Adv Carbohydr Chem 22:25–108

    CAS  Google Scholar 

  • BeMiller JN (2018a) Physical modification of starch. In: Sjöö M, Nilsson L (eds) Starch in food. Woodhead Publishing, Duxford, pp 223–253

    Chapter  Google Scholar 

  • BeMiller JN (2018b) Carbohydrate chemistry for food scientists. Elsevier, New York

    Google Scholar 

  • BeMiller JN, Huber KC (2015) Physical modification of food starch functionalities. Adv Food Sci Technol 6:19–69

    CAS  Google Scholar 

  • BeMiller JN, Whistler RL (2009) Starch: chemistry and technology, 3rd edn. Academic, New York

    Google Scholar 

  • Birt DF, Boylston T, Hendrich S, Jane J-L, Hollis J, Li L, McClelland J, Moore S, Phillips GJ, Rowling M, Schalinske K, Scott MP, Whitley EM (2013) Resistant starch: promise for improving human health. Adv Nutr 4(6):587–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brayer GD, Luo Y, Withers SG (1995) The structure of human pancreatic α-amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci 4(9):1730–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouns F, Kettlitz B, Arrigoni E (2002) Resistant starch and “the butyrate revolution”. Trends Food Sci Technol 13(8):251–261

    Article  CAS  Google Scholar 

  • Brumovsky JO, Thompson DB (2001) Production of boiling-stable granular resistant starch by partial acid hydrolysis and hydrothermal treatments of high-amylose maize starch. Cereal Chem 78(6):680–689

    Article  CAS  Google Scholar 

  • Cairns P, Morris VJ, Botham RL, Ring SG (1996) Physicochemical studies on resistant starch in vitro and in vivo. J Cereal Sci 23(3):265–275

    Article  CAS  Google Scholar 

  • Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11(10):577–591

    Article  CAS  PubMed  Google Scholar 

  • Chang F, He X, Huang Q (2013) Effect of lauric acid on the V-amylose complex distribution and properties of swelled normal cornstarch granules. J Cereal Sci 58(1):89–95

    Article  CAS  Google Scholar 

  • Colonna P, Doublier JL, Melcion JP, Demonredon F, Mercier C (1984) Extrusion cooking and drum drying of wheat starch. I Physical and macromolecular modifications. Cereal Chem 61:538–543

    CAS  Google Scholar 

  • Conway RL, Hood LF (1976) Pancreatic alpha amylase hydrolysis products of modified and unmodified tapioca starches. Starch/Stärke 28(10):341–343

    Article  CAS  Google Scholar 

  • Crowe TC, Seligman SA, Copeland L (2000) Inhibition of enzymic digestion of amylose by free fatty acids in vitro contributes to resistant starch formation. J Nutr 130(8):2006–2008

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Sotomayor M, Quezada-Calvillo R, Avery SE, Chacko SK, Yan L-k, Lin AH-M, Ao Z-h, Hamaker BR, Nichols BL (2013) Maltase-glucoamylase modulates gluconeogenesis and sucrose-isomaltase dominates starch digestion gluconeogenesis. J Pediatr Gastroenterol Nutr 57(6):704–712

    Article  CAS  PubMed  Google Scholar 

  • Doublier JL, Colonna P, Mercier C (1986) Extrusion cooking and drum drying of wheat starch. 2. Rheological characterization of starch pastes. Cereal Chem 63:240–246

    Google Scholar 

  • Dundar AN, Gocmen D (2013) Effects of autoclaving temperature and storing time on resistant starch formation and its functional and physicochemical properties. Carbohydr Polym 97(2):764–771

    Article  CAS  PubMed  Google Scholar 

  • Dupuis JH, Liu Q, Yada RY (2014) Methodologies for increasing the resistant starch content of food starches: a review. Compr Rev Food Sci Food Saf 13(6):1219–1234

    Article  CAS  Google Scholar 

  • Eerlingen RC, Delcour JA (1995) Formation, analysis and properties of type III resistant starch. J Cereal Sci 22(2):129–138

    Article  CAS  Google Scholar 

  • Eerlingen RC, Deceuninck M, Delcour JA (1993) Enzyme-resistant starch. II. Influence of amylose chain length on resistant starch formation. Cereal Chem 70:345–350

    CAS  Google Scholar 

  • Englyst HN, Cummings JH (1987) Resistant starch, a ‘new’ food component: a classification of starch for nutritional purposes. In: Morin ID (ed) Cereals in a European context. Ellis Horword, Chichester, pp 221–233

    Google Scholar 

  • Englyst HN, Macfarlane GT (1986) Breakdown of resistant starch and readily digestible starch by human gut bacteria. J Sci Food Agric 37:699–706

    Article  CAS  Google Scholar 

  • Englyst HN, Wiggins HS, Cummings JH (1982) Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 107:307–318

    Article  CAS  PubMed  Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:S33–S50

    PubMed  Google Scholar 

  • Faisant N, Champ M, Colonna P, Buleon A, Molois C, Langkilde A, Schweizer T, Flourie B, Galmiche JP (1993) Structural features of resistant starch at the end of the human small intestine. Eur J Clin Nutr 47(4):285–296

    CAS  PubMed  Google Scholar 

  • Fannon JE, Hauber RJ, BeMiller JN (1992) Surface pores of starch granules. Cereal Chem 69(3):284–288

    Google Scholar 

  • Fannon JE, Gray JA, Gunawan N, Huber KC, BeMiller JN (2003) The channels of starch granules. Food Sci Biotechnol 12(6):700–704

    CAS  Google Scholar 

  • Fannon JE, Gray JA, Gunawan N, Huber KC, BeMiller JN (2004) Heterogeneity of starch granules and the effect of granule channelization on starch modification. Cellulose 11(2):247–254

    Article  CAS  Google Scholar 

  • Fässler C, Arrigoni E, Venema K, Brouns F, Arnadò R (2006) In vitro fermentability of differently digested resistant starch preparations. Mol Nutr Food Res 50(12):1220–1228

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Zaragoza E, Riqueline-Navarrete MJ, Sánchez-Zapata E, Pérez-Alvarez JA (2010) Resistant starch as functional ingredient: a review. Food Res Int 43(4):931–942

    Article  CAS  Google Scholar 

  • Fuentes-Zaragoza E, Sánchez-Zapata E, Sendra E, Sayas E, Navarro C, Fernández-López J, Pérez-Alvarez JA (2011) Resistant starch as prebiotic: a review. Starch/Stärke 63(7):406–415

    Article  CAS  Google Scholar 

  • Gallant DJ, Bouchet B, Buleon A, Perez S (1992) Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur J Clin Nutr 46(Suppl. 2):S3–S16

    PubMed  Google Scholar 

  • Gidley MJ, Cooke D, Darke AH, Hoffman RA, Russel AL, Greenwell P (1995) Molecular order and structure in enzyme-resistant retrograded starch. Carbohydr Polym 28(1):23–31

    Article  CAS  Google Scholar 

  • Hamer HM, Jonkers DMAE, Bast A, Vanhoutvin SALW, Fischer MAG, Kodde A, Troost FJ, Venema K, Brummer R-JM (2009) Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin Nutr 28(1):88–93

    Article  CAS  PubMed  Google Scholar 

  • Han J-A, BeMiller JN (2007) Preparation and physical characteristics of slowly digesting modified food starches. Carbohydr Polym 67(3):366–374

    Article  CAS  Google Scholar 

  • Han J-A, Lim S-T (2004) Structural changes of corn starches by heating and stirring in DMSO measured by SEC-MALLS-RI system. Carbohydr Polym 55(3):265–272

    Article  CAS  Google Scholar 

  • Han J-A, BeMiller JN, Lim S-T (2003) Structural changes of debranched corn starch by aqueous heating and stirring. Cereal Chem 80(3):323–328

    Article  CAS  Google Scholar 

  • Haralampu GG (2000) Resistant starch – a review of the physical properties and biological impact of RS3. Carbohydr Polym 41(3):285–292

    Article  CAS  Google Scholar 

  • Hasjim J, Jane J-L (2009) Production of resistant starch by extrusion cooking of acid-modified normal-maize starch. J Food Sci 74(7):C556–C562

    Article  CAS  PubMed  Google Scholar 

  • Hasjim J, Ai Y, Jane J-l (2013) Novel applications of amylose-lipid complex as resistant starch type 5. In: Shi Y-C, Maningat CC (eds) Resistant starch: sources, applications and health benefits. Wiley, Hoboken, pp 79–94

    Chapter  Google Scholar 

  • Haub MD, Hubach KL, Al-tamimi EK, Ornelas S, Seib PA (2010) Different types of resistant starch elicit different glucose responses in humans. J Nutr Metab 2010:230501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hickman BE, Janaswamy S, Yao Y (2009) Autoclave and β-amylolysis lead to reduce in vitro digestibility of starch. J Agric Food Chem 57(15):7005–7012

    Article  CAS  PubMed  Google Scholar 

  • Higgins JA, Brown IL (2013) Resistant starch: a promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer. Curr Opin Gastroenterol 29(2):190–194

    Article  CAS  PubMed  Google Scholar 

  • Holm J, Björk I, Ostrowska S, Eliasson A-C, Asp NG, Larson K, Lundquist I (1983) Digestibility of amylose-lipid complexes in-vitro and in-vivo. Starch/Stärke 35(9):294–297

    Article  CAS  Google Scholar 

  • Homayuni A, Amini A, Keshtiban AK, Mortazavian AM, Esazadeh K, Pourmoradian S (2014) Resistant starch in food industry. Starch/Stärke 66:102–114

    Article  CAS  Google Scholar 

  • Hoyos-Leyva JD, Bello-Pérez LA, Agama-Acevedo E, Alvarez-Ramirez J (2015) Optimising the heat moisture treatment of Morado banana starch by response surface analysis. Starch/Stärke 67:1026–1034

    Article  CAS  Google Scholar 

  • Hung VH, Yamamori M, Morita N (2005) Formation of enzyme resistant starch in bread as affected by high-amylose wheat flour substitution. Cereal Chem 82(6):690–694

    Article  CAS  Google Scholar 

  • Hung PV, Vien NL, Phi NTL (2016) Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chem 191:67–73

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K, Matsui I, Kobayashi S, Nakatani H, Honda K (1993) Substrate recognition at the binding site in mammalian pancreatic α-amylases. Biochemistry 32(24):6259–6265

    Article  CAS  PubMed  Google Scholar 

  • Jacobson MR, BeMiller JN (1998) Method for determining the rate and extent of accelerated starch retrogradation. Cereal Chem 75(1):22–29

    Article  CAS  Google Scholar 

  • Jane JL, Robyt JF (1984) Structure studies of amylose-V complexes and retrograded amylose by action of alpha amylases, and a new method for preparing amylodextrins. Carbohydr Res 132(1):105–118

    Article  CAS  PubMed  Google Scholar 

  • Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T (1999) Effects amylopectin chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem 76(5):629–637

    Article  CAS  Google Scholar 

  • Jiang H, Jane J-l (2013) Type 2 resistant starch in high-amylose maize starch and its development. In: Shi Y-C, Maningat CC (eds) Resistant starch: sources, applications and health benefits. Wiley, Hoboken, pp 23–42

    Chapter  Google Scholar 

  • Juansang J, Puttanlek C, Rungsardthong V, Puncha-arnon S, Uttapap D (2012) Effect of gelatinisation on slowly digestible and resistant starch of heat-moisture treated and chemically modified canna starches. Food Chem 131(2):500–507

    Article  CAS  Google Scholar 

  • Kahraman K, Koksel H, Ng PKW (2015) Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content. Food Chem 174:173–179

    Article  CAS  PubMed  Google Scholar 

  • Kandra L, Gyémánt G, Remenyik J, Ragunath C, Ramasubbu N (2003) Subsite mapping of human salivary α-amylase and the mutant Y151M. FEBS Lett 544(1–3):194–198

    Article  CAS  PubMed  Google Scholar 

  • Keenan MJ, Zhou J, McCutcheon KL, Raggio AM, Bateman HG, Todd E, Jones CK, Tulley RT, Melton S, Martin RJ, Hegsted M (2006) Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity 14(9):1523–1534

    Article  CAS  PubMed  Google Scholar 

  • Kim H-S, Huber KC (2008) Channels within soft wheat starch A- and B-type granules. J Cereal Sci 48(1):159–172

    Article  CAS  Google Scholar 

  • Kim JY, Huber KC (2013) Heat-moisture treatment under mildly acidic conditions alters potato starch physiochemical properties and digestibility. Carbohydr Polym 98(2):1245–1255

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Choi SJ, Sohn MR, Lee CJ, Kim Y, Cho WI, Moon TW (2008) Resistant glutamate starch from adlay: preparation and properties. Carbohydr Polym 74:787–796

    Article  CAS  Google Scholar 

  • Kim B-S, Kim H-S, Yoo S-H (2015) Characterization of enzymatically modified rice and barley starches with amylosucrase at scale-up production. Carbohydr Polym 125:61–68

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim HR, Choi SJ, Park C-S, Moon TW (2016) Production of an in vitro low-digestible starch via hydrothermal treatment of amylosucrase modified normal and waxy rice starches and its structural properties. J Agric Food Chem 64(24):5045–5052

    Article  CAS  PubMed  Google Scholar 

  • Köksel H, Basman A, Kahraman K, Ozturk S (2007) Effect of acid modification and heat treatments on resistant starch formation and functional properties of corn starch. Int J Food Prop 10(4):691–702

    Article  CAS  Google Scholar 

  • Korus J, Witczak M, Ziobro R, Juszczak L (2009) The impact of resistant starch on characteristics of gluten-free dough and bread. Food Hydrocoll 23(3):988–995

    Article  CAS  Google Scholar 

  • Kritchevsky D (1995) Epidemiology of fibre, resistant starch and colorectal cancer. Eur J Cancer Prev 4(5):345–352

    Article  CAS  PubMed  Google Scholar 

  • Laguna L, Salvador A, Sanz T, Fiszman SM (2011) Performance of a resistant starch rich ingredient in the baking and eating quality of short- dough biscuits. LWT Food Sci Technol 44(3):737–746

    Article  CAS  Google Scholar 

  • Laurentin A, Cárdenas M, Ruales J, Pérez E, Tovar J (2003) Preparation of indigestible pyrodextrins from different starch sources. J Agric Food Chem 51(18):5510–5515

    Article  CAS  PubMed  Google Scholar 

  • Lee YL, Yoo S-H, Lee HG (2012) The effect of chemically-modified resistant starch, RS type-4, on body weight and blood lipid profiles of high fat diet-induced obese mice. Starch/Stärke 64(1):78–85

    Article  CAS  Google Scholar 

  • Lee B-H, Lin AH-M, Nichols BL, Jones K, Rose DR, Quezada-Calvillo R, Hamaker BR (2014) Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Mol Nutr Food Res 58(5):1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Lefranc-Millot C, Wils D, Deremaux L, Macioce V, Saniez-Degrave M-H (2010) Nutriose, more than just a soluble fiber. In: van der Kamp JW, Jones J, McCleary B, Topping D (eds) Dietary fiber: new frontiers for food and health. Wageningen Academic Publishers, Wageningen, pp 295–308

    Google Scholar 

  • Leu RKL, Brown IL, Hu Y, Morita T, Esterman A, Young GP (2007) Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis 28(2):240–245

    Article  PubMed  Google Scholar 

  • Leu RKL, Hu Y, Brown IL, Young GP (2009) Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA damage in the colon of rats. Nutr Metab 7:6–11

    Google Scholar 

  • Liao H-J, Lai P-Y, Koh Y-C, Hung C-C (2016) Physicochemical characteristics and in vitro digestibility of indica, japonica, and waxy type rice flours and their derived resistant starch type III products. Starch/Stärke 68:462–468

    Article  CAS  Google Scholar 

  • Lim JW, Mun SH, Shin M (2004) Action of α-amylase and acid on resistant starches prepared from normal maize starch. Food Sci Biotechnol 14:32–38

    Google Scholar 

  • Lin AH-M, Ao Z, Quezada-Calvillo R, Nichols BL, Lin C-T, Hamaker BR (2014) Branch pattern of starch internal structure influences the gluconeogenesis by mucosal Nt-maltase-glucoamylase. Carbohydr Polym 111:33–40

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Xu G (2008) Effects of resistant starch on colonic preneoplastic aberrant crypt foci in rats. Food Chem Toxicol 46(8):2672–2679

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rubio A, Flanagan BM, Shrestha AK, Gidley MJ, Gilbert EP (2008) Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromolecules 9(7):1951–1958

    Article  CAS  PubMed  Google Scholar 

  • Luhovyy BL, Mollard RC, Yurchenko S, Nunez MF, Berengut S, Liu TT, Smith CE, Pelkman CL, Anderson GH (2014) The effects of whole grain high- amylose maize flour as a source of resistant starch on blood glucose, satiety, and food intake in young men. J Food Sci 79(12):H2550–H2556

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Boye JI (2016) Research advances on structural characterization of resistant starch and its structure-physiological function relationship: a review. Crit Rev Food Sci Nutr 58(7):1059–1083

    Article  CAS  Google Scholar 

  • MacNeil S, Rebry RM, Tetlow JJ, Emes MJ, McKeown B, Graham TE (2013) Resistant starch intake at breakfast affects postprandial responses in type 2 diabetics and enhances the glucose- dependent insulinotropic polypeptide-insulin relationship following a second meal. Appl Physiol Nutr Metab 38(12):1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Mahanta CL, Bhattacharya KR (1989) Thermal degradation of starch in parboiled rice. Starch/Stärke 41(3):91–94

    Article  CAS  Google Scholar 

  • Mangala SL, Taranathen RN (1999) Structural studies of resistant starch derived from processed (autoclaved) rice. Eur Food Res Technol 209(1):38–42

    Article  CAS  Google Scholar 

  • Maningat CC, Seib PA (2013) RS4-type resistant starch: chemistry, functionality and health benefits. In: Shi Y-C, Maningat CC (eds) Resistant starch: sources, applications, and health benefits. Wiley, Hoboken, pp 43–77

    Chapter  Google Scholar 

  • Martinez I, Kim J, Duffy PR, Schlegel, Walter J (2010) Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 5:e15046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Flores HE, Chang YK, Martinez-Bustos F, Sgarbieri V (2004) Effect of high fiber products on blood lipids and lipoproteins in hamsters. Nutr Res 24(1):85–93

    Article  CAS  Google Scholar 

  • Matignon A, Tecante A (2017) Starch retrogradation: from starch components to cereal products. Food Hydrocoll 68:43–52

    Article  CAS  Google Scholar 

  • McOrist AL, Miller RB, Bird AR, Keogh JB, Noakes M, Topping DL, Conlon MA (2011) Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr 141(5):883–889

    Article  CAS  PubMed  Google Scholar 

  • Mei J-Q, Zhou DN, Jin Z-Y, Xu X-M, Chen H-Q (2015) Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch. Food Chem 187:378–384

    Article  CAS  PubMed  Google Scholar 

  • Modig G, Nilsson P-O, Wahlund K-G (2006) Influence of jet-cooking temperature and ionic strength on size and structure of cationic potato amylopectin starch as measured by asymmetrical flow field-flow fraction multi-angle light scattering. Starch/Stärke 58:55–65

    Article  CAS  Google Scholar 

  • Morell MK, Konik-Rose C, Ahmed R, Li Z, Rahman S (2004) Synthesis of resistant starch in plants. J AOAC Int 87(3):740–748

    Article  CAS  PubMed  Google Scholar 

  • Mun S-H, Shin M (2006) Mild hydrolysis of resistant starch from maize. Food Chem 96(1):115–121

    Article  CAS  Google Scholar 

  • Nagamine Y, Omichi K, Ikenaka T (1988) A comparison of the modes of actions of human salivary and pancreatic α-amylases on modified maltooligosaccharides. J Biochem 104(4):667–670

    Article  CAS  PubMed  Google Scholar 

  • Nasrin TA, Anal AK (2014) Resistant starch: properties, preparations and applications in functional foods. In: Noomhorm A, Ahmad I, Anal AK (eds) Functional foods and dietary supplements: processing effects and health benefits. Wiley, Hoboken, pp 228–253

    Google Scholar 

  • Nugent AP (2005) Health properties of resistant starch. Nutr Bull 30(1):27–54

    Article  Google Scholar 

  • Ohkuma K, Wakabayashi S (2001) Fibersol-2: a soluble, non-digestible, starch-derived dietary fiber. In: McCleary BV, Prosky L (eds) Advanced dietary fiber technology. Blackwell Science, Duxford, pp 509–523

    Google Scholar 

  • Ordonio RL, Matsuoka M (2016) Increasing resistant starch content in rice for better consumer health. Proc Natl Acad Sci USA 113(45):12616–12618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Östergård K, Björck I, Gunnarsson A (1988) A study of native and chemically modified potato starch. I. Analysis and enzymatic availability in vitro. Starch/Stärke 40(2):58–66

    Article  Google Scholar 

  • Ozturk S, Koksel H, Ng PKW (2011) Production of resistant starch from acid-modified amylotype starches with enhanced functional properties. J Food Eng 103(2):156–164

    Article  CAS  Google Scholar 

  • Perera A, Meda V, Tyler RT (2010) Resistant starch: a review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res Int 43(8):1959–1974

    Article  CAS  Google Scholar 

  • Pfannemüller B, Mayerhöfer H, Schulz RC (1971) Conformation of amylose in aqueous solution: optical rotatory dispersion and circular dichroism of amylose-iodine complexes and dependence on chain length of retrograded amylose. Biopolymers 10(2):243–261

    Article  Google Scholar 

  • Polakof S, Diaz-Rubio ME, Dardevet D, Martin J-F, Pujos-Guillot E, Scalbert A, Sebedio J-L, Mazur A, Comte B (2013) Resistant starch intake restores metabolic and inflammatory alterations in the liver of high-fat-fed rats. J Nutr Biochem 24(11):1920–1930

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Bird A, Regina A, Li Z, Rai JP, McMaugh S, Topping D, Morell M (2007) Resistant starch in cereals: exploiting genetic engineering and genetic variation. J Cereal Sci 46(3):251–260

    Article  CAS  Google Scholar 

  • Raigond P, Ezekiel R, Raigond B (2015) Resistant starch in food: a review. J Sci Food Agric 95(10):1968–1978

    Article  CAS  PubMed  Google Scholar 

  • Ramasubbu N, Paloth V, Luo Y, Brayer GD, Levine MJ (1996) Structure of human salivary α-amylase at 1.6Å resolution: implications for its role in the oral cavity. Acta Crystallogr D52(Pt 3):435–446

    CAS  Google Scholar 

  • Ramasubbu N, Ragunath C, Sundar K, Mishra P, Gyemant G, Kandra L (2005) Structure-function relationships in human salivary α-amylase: role of aromatic residues. Biologia 63(6):1028–1034

    Google Scholar 

  • Reddy CK, Suriya M, Haripriya S (2013) Physico-chemical and functional properties of resistant starch prepared from red kidney beans (Phaseolus vulgaris.L.) starch by enzymatic method. Carbohydr Polym 95(1):220–226

    Article  CAS  PubMed  Google Scholar 

  • Robertson MD (2012) Dietary-resistant starch and glucose metabolism. Curr Opin Clin Nutr Metab Care 15(4):362–367

    Article  CAS  PubMed  Google Scholar 

  • Rohlfing KA, Paez A, Kim HJ, White PJ (2010) Effects of resistant starch and fiber from high-amylose non-floury corn on tortilla texture. Cereal Chem 87(6):581–585

    Article  CAS  Google Scholar 

  • Russell PL, Berry CS, Greenwell P (1989) Characterisation of resistant starch from wheat and maize. J Cereal Sci 9(1):1–15

    Article  CAS  Google Scholar 

  • Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch – a review. Compr Rev Food Sci Food Saf 5(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Sang Y, Prakash O, Seib PA (2007) Characterization of phosphorylated cross-linked resistant starch by 31P nuclear magnetic resonance (31P NMR) spectroscopy. Carbohydr Polym 67(2):201–212

    Article  CAS  Google Scholar 

  • Sanz T, Salvador A, Baixauli R, Fiszman SM (2009) Evaluation of four types of resistant starch. II. Effects in texture, colour and consumer response. Eur Food Res Technol 229(2):197–204

    Article  CAS  Google Scholar 

  • Segain J-P, De La Bietiere D, Raingeard D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blottiere HM, Galmiche J-P (2000) Butyrate inhibits inflammatory responses though NFκB inhibition: implications for Crohn’s disease. Gut 47(3):397–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Yadav BS, Ritika (2008) Resistant starch: physiological roles and food applications. Food Rev Intl 24(2):193–234

    Article  CAS  Google Scholar 

  • Shi Y-C, Maningat CC (2013) Resistant starch: sources, applications and health benefits. Wiley, Hoboken

    Book  Google Scholar 

  • Shi Y-C, Seib PA (1995) Fine structure of maize starches from four wx-containing genotypes of the W64A inbred line in relation to gelatinization and retrogradation. Carbohydr Polym 26(2):141–147

    Article  CAS  Google Scholar 

  • Shin M, Woo K, Seib PA (2003) Hot-water solubilities and water-sorptions of resistant starches at 25°C. Cereal Chem 80(5):564–566

    Article  CAS  Google Scholar 

  • Shin SI, Lee CJ, Kim D-I, Lee HA, Cheong J-J, Chung KM, Baik M-Y, Park CS, Kim CH, Moon TW (2007) Formation, characterization, and glucose response in mice to rice starch with low digestibility produced by citric acid treatment. J Cereal Sci 45(1):24–33

    Article  CAS  Google Scholar 

  • Shrestha A, Blazek J, Flanagan BM, Dhital S, Larroque O, Morell MK, Gilbert EP, Gidley MJ (2012) Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules. Carbohydr Polym 90:23–33

    Google Scholar 

  • Shrestha AK, Blazek J, Flanagan BM, Dhital S, Larroque O, Morrell MK, Gilbert EP, Gidley MJ (2015) Molecular, mesoscopic and microscopic structure evolution during amylase digestion of extruded maize and high amylose maize starches. Carbohydr Polym 118:224–234

    Article  CAS  PubMed  Google Scholar 

  • Shukri R, Seib PA, Maningat CC, Shi Y-C (2013) In vitro enzymatic testing method and digestion mechanism of cross-linked wheat starch. In: Shi Y-C, Maningat CC (eds) Resistant starch: sources, applications, and health benefits. Wiley, Hoboken

    Google Scholar 

  • Shukri R, Zhu L, Seib PA, Maningat C, Shi Y-C (2015) Direct in-vitro assay of resistant starch in phosphorylated cross-linked starch. Bioact Carbohydr Diet Fibre 5(1):1–9

    Article  CAS  Google Scholar 

  • Simsek S, Ovando-Martínez M, Whitney K, Bello-Pérez LA (2012) Effect of acetylation, oxidation and annealing on physicochemical properties of bean starch. Food Chem 134(4):1796–1803

    Article  CAS  PubMed  Google Scholar 

  • Slade L, Levine H (1991) Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30(2–3):115–360

    Article  CAS  PubMed  Google Scholar 

  • Song J-Y, Park J-H, Shin M (2011) The effects of annealing and acid hydrolysis on resistant starch level and the properties of cross-linked RS4 rice starch. Starch/Stärke 63:147–153

    Article  CAS  Google Scholar 

  • Sui Z, Shah A, BeMiller JN (2011) Crosslinked and stabilized in-kernel heat-moisture-treated and temperature-cycled normal maize starch and effects of reaction conditions on starch properties. Carbohydr Polym 86(4):1461–1467

    Article  CAS  Google Scholar 

  • Svihus B, Hervik AK (2016) Digestion and metabolic fates of starch, and its relation to major nutrition-related health problems: a review. Starch/Stärke 68(3–4):302–313

    Article  CAS  Google Scholar 

  • Thompson LU, Maningat CC, Woo K, Seib PA (2011) In vitro digestion of RS4-type resistant wheat and potato starches, and fermentation of indigestible fractions. Cereal Chem 88(1):72–79

    Article  CAS  Google Scholar 

  • Topping DL, Bajka BH, Bird AR, Clarke JM, Cobiac L, Conlon MA, Morell M, Toden S (2008) Resistant starches as a vehicle for delivering health benefits to the human large bowel. Microb Ecol Health Dis 20(2):103–108

    CAS  Google Scholar 

  • Trinh KS, Choi SJ, Moon TW (2013) Structure and digestibility of debranched and hydrothermally treated water yam starch. Starch/Stärke 65(7–8):679–686

    Article  CAS  Google Scholar 

  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley GE, Parkhill J, Flint HJ (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5(2):220–230

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang B, Chen L, Li X (2016) Understanding the structure and digestibility of heat-moisture treated starch. Int J Biol Macromol 88:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wepner B, Berghofer E, Miesenberger E, Tiefenbacher K, Ng PNK (1999) Citrate starch – application as resistant starch in different food systems. Starch/Stärke 51(10):354–361

    Article  CAS  Google Scholar 

  • Whistler RL, BeMiller JN, Paschall EF (1984) Starch: chemistry and technology, 2nd edn. Academic, Orlando

    Google Scholar 

  • Wong THT, Louie JCY (2017) The relationship between resistant starch and glycemic control: a review on current evidence and possible mechanisms. Starch/Stärke 69:1600205

    Article  CAS  Google Scholar 

  • Woo KS, Seib PA (2002) Cross-linked resistant starch: preparation and properties. Cereal Chem 79(6):819–825

    Article  CAS  Google Scholar 

  • Woo KS, Maningat CC, Seib PA (2009) Increasing dietary fiber in foods: the case for phosphorylated cross-linked resistant starch, a highly concentrated form of dietary fiber. Cereal Foods World 54:217–223

    CAS  Google Scholar 

  • Wootton M, Chaudhry MA (1979) Enzymic digestibility of modified starches. Starch/Stärke 31:224–228

    Article  CAS  Google Scholar 

  • Wurzburg OB, Vogel WF (1984) Modified starch – safety and regulatory aspects. In: Phillips GO, Wedlock DJ, Williams PA (eds) Gums and stabilisers for the food industry. Pergamon Press, Oxford, pp 406–415

    Google Scholar 

  • Xie XS, Liu Q (2004) Development and physicochemical characterization of new resistant citrate starch from different corn starches. Starch/Stärke 56(8):364–370

    Article  CAS  Google Scholar 

  • Yu S, Xu J, Zhang Y, Kopparapu NK (2014) Relationship between intrinsic viscosity, thermal, and retrogradation properties of amylose and amylopectin. Czech J Food Sci 32(5):514–520

    Article  CAS  Google Scholar 

  • Zhang H, Jin Z (2011) Preparation of products rich in resistant starch from maize starch by an enzymatic method. Carbohydr Polym 86(4):1610–1614

    Article  CAS  Google Scholar 

  • Zhang J, Chen F, Liu F, Wang Z-W (2010) Study on structural changes of microwave heat-moisture treated resistant Canna edulis Ker starch during digestion in vitro. Food Hydrocoll 24(1):27–34

    Article  CAS  Google Scholar 

  • Zhang B, Huang Q, Luo F-x, Fu X, Jiang H, Jane J-l (2011) Effects of octenylsuccinylation on the structure and properties of high-amylose maize starch. Carbohydr Polym 84(4):1276–1281

    Article  CAS  Google Scholar 

  • Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L, Danna SC, Tripathy RT, Hegsted M, Keenan MJ (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol 295(5):E1160–E1166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James N. BeMiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

BeMiller, J.N. (2020). Resistant Starch. In: Welti-Chanes, J., Serna-Saldívar, S., Campanella, O., Tejada-Ortigoza, V. (eds) Science and Technology of Fibers in Food Systems. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-38654-2_7

Download citation

Publish with us

Policies and ethics