Skip to main content

Emerging Technologies for the Extraction and Modification of Dietary Fiber

  • Chapter
  • First Online:
Science and Technology of Fibers in Food Systems

Abstract

Dietary fiber (DF) obtained from fruits, vegetables, cereals, and algae has nutritional benefits and functional properties. The incorporation of these materials results in food products with a reduced calorie, cholesterol, and fat content. DF also serve as functional ingredient improving hydration, oil holding capacity, viscosity, texture, sensory quality, and shelf-life. The extraction and modification of DFs can convert low-cost, undervalued byproducts into functional nutritional ingredients with high market value. Novel treatments, alone or in combination with conventional technologies, can improve the yield of DFs and retain or enhance their functionality. Microwave-heating, pressurized hot water, ultrasounds (US), and high hydrostatic pressures processing (HHP) reduce processing time and temperature, decrease the use of solvents, and enhance the recovery and functionality of DFs. Post DF extraction treatments, including particle size reduction, US and HHP, can be used to improve the functionality of DFs through the modification of their soluble and insoluble content. Processing by emerging technologies can also cause changes of the structural, rheological, and physicochemical properties of the native DF structure. DF modification by emerging technologies and its impact on the properties of DF-enriched ingredients and foods are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adom KK, Sorrells ME, Liu RH (2003) Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem 51:7825–7834

    Article  CAS  PubMed  Google Scholar 

  • Ahmed J, Almusallam A, Al-Hooti SN (2013) Isolation and characterization of insoluble date (Phoenix dactylifera L.) fibers. LWT Food Sci Technol 50:414–419

    Article  CAS  Google Scholar 

  • Bagherian H, Ashtiani FZ, Fouladitajar A, Mohtashamy M (2011) Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Process Process Intensif 50:1237–1243

    Article  CAS  Google Scholar 

  • Beaugrand J, Chambat G, Wong VW, Goubet F, Rémond C, Paës G, Benamrouche S, Debeire P, O’Donohue M, Chabbert B (2004) Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr Res 339(15):2529–2540

    Article  CAS  PubMed  Google Scholar 

  • Behera SS, Ray RC (2016) Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int J Biol Macromol 92:942–956

    Article  CAS  PubMed  Google Scholar 

  • Benito-Román Ó, Alonso E, Cocero MJ (2013a) Pressurized hot water extraction of β-glucans from waxy barley. J Supercrit Fluids 73:120–125

    Article  CAS  Google Scholar 

  • Benito-Román Ó, Alonso E, Cocero MJ (2013b) Ultrasound-assisted extraction of β-glucans from barley. LWT Food Sci Technol 50(1):57–63

    Article  CAS  Google Scholar 

  • Boukroufa M, Boutekedjiret C, Petigny L, Rakotomanomana N (2015) Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrason Sonochem 24:72–79

    Article  CAS  PubMed  Google Scholar 

  • Champ M, Langkilde AM, Brouns F, Kettlitz B, Collet YLB (2003) Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects. Nutr Res Rev 16:71–82

    Article  CAS  PubMed  Google Scholar 

  • Chau CF, Chen CH, Lee MH (2004) Comparison of the characteristics, functional properties, and in vitro hypoglycemic effects of various carrot insoluble fibre-rich fractions. LWT Food Sci Technol 37:155–160

    Article  CAS  Google Scholar 

  • Chau CF, Wang YT, Wen YL (2007) Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chem 100(4):1402–1408

    Article  CAS  Google Scholar 

  • Chen J, Gao D, Yang L, Gao Y (2013) Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Res Int 54:1821–1827

    Article  CAS  Google Scholar 

  • Cruz RMS, Rubilar JF, Ulloa PA, Torres JA, Vieira MC (2011) New food processing technologies: development and impact on the consumer acceptability. In: Columbus F (ed) Food quality: control, analysis and consumer concerns. Nova Science Publishers, New York, pp 555–584

    Google Scholar 

  • Cummings JH, Stephen AM (2007) Carbohydrate terminology and classification. Eur J Clin Nutr 61:S5–S18

    Article  CAS  PubMed  Google Scholar 

  • de Moraes Crizel T, Jablonski A, de Oliveira Rios A, Rech R, Flôres SH (2013) Dietary fiber from orange byproducts as a potential fat replacer. LWT Food Sci Technol 53:9–14

    Article  CAS  Google Scholar 

  • de Oliveira CF, Giordani D, Gurak PD, Cladera-Olivera F, Ferreira Marczak LD (2015) Extraction of pectin from passion fruit peel using moderate electric field and conventional heating extraction methods. Innovative Food Sci Emerg Technol 29:201–208

    Article  CAS  Google Scholar 

  • Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem 124:411–421

    Article  CAS  Google Scholar 

  • Escarnot E, Aguedo M, Paquot M (2012) Enzymatic hydrolysis of arabinoxylans from spelt bran and hull. J Cereal Sci 55(2):243–253

    Article  CAS  Google Scholar 

  • Fan L, Ma S, Wang X, Zheng X (2015) Improvement of Chinese noodle quality by supplementation with arabinoxylans from wheat bran. Int J Food Sci Technol 51(3):602–608

    Article  CAS  Google Scholar 

  • Garcia-Amezquita LE, Primo-Mora AR, Barbosa-Cánovas GV, Sepulveda DR (2009) Effect of nonthermal technologies on the native size distribution of fat globules in bovine cheese-making milk. Innovative Food Sci Emerg Technol 10:491–494

    Article  CAS  Google Scholar 

  • Garcia-Amezquita LE, Primo-Mora AR, Guerrero-Beltrán JÁ, Barbosa-Cánovas GV, Sepulveda DR (2013) Rennetability of cheese-making milk processed by nonthermal technologies. J Food Process Eng 36(2):247–253

    Article  CAS  Google Scholar 

  • Guo X, Han D, Xi H, Rao L, Liao X, Hu X, Wu J (2012) Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: a comparison. Carbohydr Polym 88:441–448

    Article  CAS  Google Scholar 

  • Haghighi A, Khajenoori M (2013) Subcritical water extraction. In: Nakajima H (ed) Mass transfer – advances in sustainable energy and environment oriented numerical modeling. Intech, London, pp 459–488

    Google Scholar 

  • Hematian Sourki A, Koocheki A, Elahi M (2017) Ultrasound-assisted extraction of beta-d-glucan from hull-less barley: assessment of physicochemical and functional properties. Int J Biol Macromol 95:462–475

    Article  CAS  PubMed  Google Scholar 

  • Hipsley EH (1953) Dietary “fibre” and pregnancy toxaemia. Br Med J 2:420–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Ding X, Zhao Y, Li Y, Ma H (2017) Modification of insoluble dietary fiber from garlic straw with ultrasonic treatment. J Food Process Preserv 42(1):1–8

    Article  CAS  Google Scholar 

  • Huang X, Dou JY, Li D, Wang LJ (2018) Effects of superfine grinding on properties of sugar beet pulp powders. LWT Food Sci Technol 87:203–209

    Article  CAS  Google Scholar 

  • Huisman MMH, Schols HA, Voragen AGJ (1998) Cell wall polysaccharides from soybean (Glycine max.) meal. Isolation and characterisation. Carbohydr Polym 37:87–95

    Article  Google Scholar 

  • Irakli M, Biliaderis CG, Izydorczyk MS, Papadoyannis IN (2004) Isolation, structural features and rheological properties of water-extractable β-glucans from different Greek barley cultivars. J Sci Food Agric 84:1170–1178

    Article  CAS  Google Scholar 

  • Kilpeläinen PO, Hautala SS, Byman OO, Tanner LJ, Korpinen RI, Lillandt MKJ, Pranovich AV, Kitunen VH, Willförb SM, Ilvesniemi HS (2014) Pressurized hot water flow-through extraction system scale up from the laboratory to the pilot scale. Green Chem 16(6):3186–3194

    Article  Google Scholar 

  • Kolida S, Tuohy K, Gibson GR (2007) Prebiotic effects of inulin and oligofructose. Br J Nutr 87(S2):S193–S197

    Article  CAS  Google Scholar 

  • Koubala BB, Mbome LI, Kansci G, Mbiapo FT, Crepeau MJ, Thibault JF, Ralet MC (2008) Physicochemical properties of pectins from ambarella peels (Spondias cytherea) obtained using different extraction conditions. Food Chem 106:1202–1207

    Article  CAS  Google Scholar 

  • Lequart C, Nuzillard JM, Kurek B, Debeire P (1999) Hydrolysis of wheat bran and straw by an endoxylanase: production and structural characterization of cinnamoyl-oligosaccharides. Carbohydr Res 319:102–111

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li B, Geng P, Song AX, Wu JY (2017) Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water. Food Hydrocoll 70:14–19

    Article  CAS  Google Scholar 

  • Liu Y, Shi J, Langrish TAG (2006) Water-based extraction of pectin from flavedo and albedo of orange peels. Chem Eng J 120:203–209

    Article  CAS  Google Scholar 

  • Liu W, Liu J, Xie M, Liu C, Liu W, Wan J (2009) Characterization and high-pressure microfluidization-induced activation of polyphenoloxidase from Chinese pear (Pyrus pyrifolia Nakai). J Agric Food Chem 57(12):5376–5380

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Xi B, Zhang Y, Angelidaki I (2011) Microwave pretreatment of rape straw for bioethanol production: focus on energy efficiency. Bioresour Technol 102:7937–7940

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Mu T (2016) Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure. Carbohydr Polym 20(136):87–94

    Article  CAS  Google Scholar 

  • Maran JP, Priya B (2015) Ultrasound-assisted extraction of pectin from sisal waste. Carbohydr Polym 115:732–738

    Article  CAS  PubMed  Google Scholar 

  • Mateos-Aparicio I, Mateos-Peinado C, Rupérez P (2010) High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innovative Food Sci Emerg Technol 11:445–450

    Article  CAS  Google Scholar 

  • Meyer AS, Dam BP, Lærke HN (2009) Enzymatic solubilization of a pectinaceous dietary fiber fraction from potato pulp: optimization of the fiber extraction process. Biochem Eng J 43:106–112

    Article  CAS  Google Scholar 

  • Minjares-Fuentes R, Femenia A, Garau MC, Meza-Velázquez JA (2014) Ultrasound-assisted extraction of pectins from grape pomace using citric acid: a response surface methodology approach. Carbohydr Polym 106:179–189

    Article  CAS  PubMed  Google Scholar 

  • Moorthy IG, Maran JP, Surya SM, Naganyashree S, Shivamathi CS (2015) Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. Int J Biol Macromol 72:1323–1328

    Article  CAS  PubMed  Google Scholar 

  • Mudgil D, Barak S (2013) Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int J Biol Macromol 61:1–6

    Article  CAS  PubMed  Google Scholar 

  • Mújica-Paz H, Valdez-Fragoso A, Tonello Samson C, Welti-Chanes J, Torres JA (2011) High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol 4(6):969–985

    Article  Google Scholar 

  • Naghshineh M, Olsen K, Georgiou CA (2013) Sustainable production of pectin from lime peel by high hydrostatic pressure treatment. Food Chem 136:472–478

    Article  CAS  PubMed  Google Scholar 

  • Onyeneho SN, Hettiarachchy NS (1992) Antioxidant activity of durum wheat bran. J Agric Food Chem 40:1496–1500

    Article  CAS  Google Scholar 

  • Pacheco I (2009) Evaluación del efecto de sonicación-microondas en el beneficio de vainillina (Vainilla planifolia Andrews). Instituto Politécnico Nacional, Mexico City

    Google Scholar 

  • Panouillé M, Thibault JF, Bonnin E (2006) Cellulase and protease preparations can extract pectins from various plant byproducts. J Agric Food Chem 54:8926–8935

    Article  PubMed  CAS  Google Scholar 

  • Paradiso VM, Giarnetti M, Summo C, Pasqualone A, Minervini F, Caponio F (2015) Production and characterization of emulsion filled gels based on inulin and extra virgin olive oil. Food Hydrocoll 45:30–40

    Article  CAS  Google Scholar 

  • Pérez-López E, Mateos-Aparicio I, Rupérez P (2016) Okara treated with high hydrostatic pressure assisted by Ultraflo® L: effect on solubility of dietary fibre. Innovative Food Sci Emerg Technol 33:32–37

    Article  CAS  Google Scholar 

  • Prakash Maran J, Sivakumar V, Thirugnanasambandham K, Sridhar R (2013) Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr Polym 97(2):703–709

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Jiang L, Li Y, Chen S, Sui X (2011) Extract dietary fiber from the soy pods by chemistry-enzymatic methods. Procedia Eng 15:4862–4873

    Article  CAS  Google Scholar 

  • Raghavendra SN, Ramachandra Swamy SR, Rastogi NK, Raghavarao KSMS, Kumar S, Tharanathan RN (2006) Grinding characteristics and hydration properties of coconut residue: a source of dietary fiber. J Food Eng 72:281–286

    Article  Google Scholar 

  • Ramirez R, Saraiva J, Pérez Lamela C, Torres JA (2009) Reaction kinetics analysis of chemical changes in pressure-assisted thermal processing. Food Eng Rev 1(1):16–30

    Article  CAS  Google Scholar 

  • Rogalinski T, Ingram T, Brunner G (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47:54–63

    Article  CAS  Google Scholar 

  • Sangnark A, Noomhorm A (2003) Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chem 80:221–229

    Article  CAS  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  • Seixas FL, Fukuda DL, Turbiani FRB, Garcia PS, Petkowicz CLDO, Jagadevan S, Gimenes ML (2014) Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating. Food Hydrocoll 38:189–192

    Article  CAS  Google Scholar 

  • Slavin JL (2001) Dietary fibre and colon cancer. In: Cho SS, Dreher ML (eds) Handbook of dietary fibre. Marcel Dekker Inc., New York, pp 31–45

    Google Scholar 

  • Tanaka M, Takamizu A, Hoshino M, Sasaki M, Goto M (2012) Extraction of dietary fiber from Citrus junos peel with subcritical water. Food Bioprod Process 90:180–186

    Article  CAS  Google Scholar 

  • Tejada-Ortigoza V, Garcia-Amezquita LE, Serna-Saldívar SO, Welti-Chanes J (2015) Advances in the functional characterization and extraction processes of dietary fiber. Food Eng Rev 8(3):251–271

    Article  CAS  Google Scholar 

  • Tejada-Ortigoza V, Garcia-Amezquita LE, Serna-Saldívar SO, Welti-Chanes J (2017) The dietary fiber profile of fruit peels and functionality modifications induced by high hydrostatic pressure treatments. Food Sci Technol Int 23(5):396–402

    Article  CAS  PubMed  Google Scholar 

  • Tejada-Ortigoza V, Garcia-Amezquita LE, Serna-Saldívar SO, Martín-Belloso O, Welti-Chanes J (2018) High hydrostatic pressure and mild heat treatments for the modification of orange peel dietary fiber: effects on hygroscopic properties and functionality. Food Bioprocess Technol 11(1):110–121

    Article  CAS  Google Scholar 

  • Tenorio MD, Espinosa-Martos I, Prestamo G, Ruperez P (2010) Soybean whey enhance mineral balance and caecal fermentation in rats. Eur J Nutr 49(3):155–163

    Article  CAS  PubMed  Google Scholar 

  • Teo CC, Tan SN, Yong JW, Hew CS, Ong ES (2008) Evaluation of the extraction efficiency of thermally labile bioactive compounds in Gastrodia elata Blume by pressurized hot water extraction and microwave-assisted extraction. J Chromatogr A 1182(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Thirugnanasambandham K, Sivakumar V, Prakash Maran J (2014) Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohydr Polym 112:622–626

    Article  CAS  PubMed  Google Scholar 

  • Torres JA, Velázquez G (2005) Commercial opportunities and research challenges in the high pressure processing of foods. J Food Eng 67(1–2):95–112

    Article  Google Scholar 

  • Torres JA, Serment-Moreno V, Velazquez G, Escobedo-Avellaneda Z, Welti-Chanes J (2015) Pressure effects on the rate of chemical reactions at high pressure and high temperature. In: Balasubramaniam VM, Barbosa-Cánovas GV, Lelieveld HLM (eds) High pressure processing of food – principles, technology and applications. Springer Science+Business Media, Berlin, pp 461–478

    Google Scholar 

  • Torres-Mora MA, Soeldner A, Ting EY, Hawes ACO Alemán GD, Bakski GS, McManus WR, Hansen CL Torres JA (1996) Early microstructure changes in Cheddar cheese and effects of high pressure curd processing. Paper no.6–2. Paper presented at the IFT Annual Meeting, New Orleans

    Google Scholar 

  • Ulbrich M, Flöter E (2014) Impact of high pressure homogenization modification of a cellulose based fiber product on water binding properties. Food Hydrocoll 41:281–289

    Article  CAS  Google Scholar 

  • van Craeyveld V, Dornez E, Holopainen U, Selinheimo E, Poutanen K, Delcour JA, Courtin CM (2010) Wheat bran AX properties and choice of xylanase affect enzymic production of wheat bran-derived arabinoxylan-oligosaccharides. Cereal Chem 87(4):283–291

    Article  CAS  Google Scholar 

  • Varo P, Laine R, Koivistoinen P (1983) Effect of heat treatment of dietary fiber: interlaboratory study. J Assoc Off Anal Chem 66(4):933–938

    CAS  PubMed  Google Scholar 

  • Wang S, Chen F, Wu J, Wang Z, Liao X, Hu X (2007) Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. J Food Eng 78:693–700

    Article  CAS  Google Scholar 

  • Wang T, Sun X, Zhou Z, Chen GC (2012) Effects of microfluidization process on physicochemical properties of wheat bran. Food Res Int 48:742–747

    Article  CAS  Google Scholar 

  • Wang J, Sun B, Liu Y, Zhang H (2014a) Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chem 150:482–488

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen Q, Lü X (2014b) Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll 38:129–137

    Article  CAS  Google Scholar 

  • Wang L, Xu H, Yuan F, Fan R, Gao Y (2015a) Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chem 185:90–98

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Ma X, Xu Y, Cao Y, Jiang Z, Ding T, Ye X, Liu D (2015b) Ultrasound-assisted heating extraction of pectin from grapefruit peel: optimization and comparison with the conventional method. Food Chem 178:106–114

    Article  CAS  PubMed  Google Scholar 

  • Wennberg M, Nyman M (2004) On the possibility of using high pressure treatment to modify physico-chemical properties of dietary fibre in white cabbage (Brassica oleracea var. capitata). Innovative Food Sci Emerg Technol 5(2):171–177

    Article  CAS  Google Scholar 

  • World Health Organization (2003) Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser 916(i-viii):1–149

    Google Scholar 

  • Xu Y, Zhang L, Bailina Y, Ge Z, Ding T, Ye X, Liu D (2014) Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J Food Eng 126:72–81

    Article  CAS  Google Scholar 

  • Yeoh S, Shi J, Langrish TAG (2008) Comparisons between different techniques for water-based extraction of pectin from orange peels. Desalination 218:229–237

    Article  CAS  Google Scholar 

  • Zhang W, Zeng G, Pan Y, Chen W, Huang W, Chen H, Li Y (2017) Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction. Carbohydr Polym 172:102–112

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Qian Y, Zhou Y, Zhang R (2012) Effect of enzymatic extraction treatment on physicochemical properties, microstructure and nutrient composition of tartary buckwheat bran: a new source of antioxidant dietary fiber. Adv Mater Res 396:2052–2059

    Google Scholar 

  • Zhu K, Huang S, Peng W, Qian H, Zhou H (2010) Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Res Int 43:943–948

    Article  CAS  Google Scholar 

  • Zhu F, Du B, Li R, Li J (2014) Effect of micronization technology on physicochemical and antioxidant properties of dietary fiber from buckwheat hulls. Biocatal Agric Biotechnol 3(3):30–34

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this work were supported by project INNOPUNTIA INIA RTA2015-00044-C02-02 funded by the Spanish Ministry of Science and Innovation, and project FUNFOODEMERTEC funded by Tecnológico de Monterrey in Mexico. The support from Tecnológico de Monterrey Research Chair Funds GEE 1A01001 and CDB081, and Mexico’s CONACYT Scholarship Program [Grant Nos. 260692 and 205265] and Project CB2014-237271 are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pilar Cano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tejada-Ortigoza, V., García-Cayuela, T., Welti-Chanes, J., Cano, M.P., Torres, J.A. (2020). Emerging Technologies for the Extraction and Modification of Dietary Fiber. In: Welti-Chanes, J., Serna-Saldívar, S., Campanella, O., Tejada-Ortigoza, V. (eds) Science and Technology of Fibers in Food Systems. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-38654-2_16

Download citation

Publish with us

Policies and ethics