Skip to main content

Extraction and Modification of Dietary Fiber Applying Thermal Processes

  • Chapter
  • First Online:
Science and Technology of Fibers in Food Systems

Abstract

This chapter describes the application of thermal treatments for the extraction and modification of dietary fiber (DF). In the last decades, the food industry has focused its attention on developing innovative food ingredients capable of providing health benefits without compromising their safety and technological functionality. The inclusion of DFs in the formulation of foods providing health benefits is of consumer and industry interest. Thermal processes, without the use of chemical reagents, have been widely utilized for the extraction and modification of DFs. Hot and boiling water, scalding, blanching, steam explosion, and thermal extrusion have been used to extract DFs, and to modify DF fractions and components. DF extraction at elevated temperatures results in higher extraction yields, particularly of highly insoluble compounds. Thermal treatments can also modify the composition of DFs by solubilizing their insoluble fraction. This modification has the potential of improving their functionality. Additional thermal treatment used as a final conditioning step of previously extracted and modified DF products, such as hot air-drying, have also been proven to further modify DFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 99(2):1477–1483

    Article  CAS  Google Scholar 

  • Agama-Acevedo E, Sañudo-Barajas JA, Vélez De La Rocha R, González-Aguilar GA, Bello-Perez LA (2016) Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CyTA-J Food 14(1):117–123

    Article  CAS  Google Scholar 

  • Ahmed J, Shivhare US (2006) Thermal processing of vegetables. In: Sun D-W (ed) Thermal food processing, 1st edn. CRC Press, Boca Raton, pp 387–423

    Google Scholar 

  • Ajila CM, Leelavathi KUJS, Rao UP (2008) Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J Cereal Sci 48(2):319–326

    Article  CAS  Google Scholar 

  • Auffret A, Ralet MC, Guillon F, Barry JL, Thibault JF (1994) Effect of grinding and experimental conditions on the measurement of hydration properties of dietary fibres. LWT Food Sci Technol 27(2):166–172

    Article  CAS  Google Scholar 

  • Basanta MF, Ponce NM, Rojas AM, Stortz CA (2012) Effect of extraction time and temperature on the characteristics of loosely bound pectins from Japanese plum. Carbohydr Polym 89(1):230–235

    Article  CAS  PubMed  Google Scholar 

  • Benítez V, Mollá E, Martín-Cabrejas M, Aguilera Y, López-Andréu F, Esteban RM (2011) Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chem 127(2):501–507

    Article  PubMed  CAS  Google Scholar 

  • Camire ME, Violette D, Dougherty MP, McLaughlin MA (1997) Potato peel dietary fiber composition: effects of peeling and extrusion cooking processes. J Agric Food Chem 45(4):1404–1408

    Article  CAS  Google Scholar 

  • Carr AG, Mammucari R, Foster NR (2011) A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem Eng J 172(1):1–17

    Article  CAS  Google Scholar 

  • Chantaro P, Devahastin S, Chiewchan N (2008) Production of antioxidant high dietary fiber powder from carrot peels. LWT Food Sci Technol 41(10):1987–1994

    Article  CAS  Google Scholar 

  • Chau CF, Huang YL (2003) Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. J Agric Food Chem 51(9):2615–2618

    Article  CAS  PubMed  Google Scholar 

  • Crizel TDM, Rios ADO, Thys RCS, Flôres SH (2015) Effects of orange by-product fiber incorporation on the functional and technological properties of pasta. Food Sci Tech 35(3):546–551

    Article  Google Scholar 

  • de Vries S, Pustjens AM, Schols HA, Hendriks WH, Gerrits WJJ (2012) Improving digestive utilization of fiber-rich feedstuffs in pigs and poultry by processing and enzyme technologies: a review. Anim Feed Sci Technol 178(3–4):123–138

    Article  CAS  Google Scholar 

  • Femenia A, Sánchez ES, Simal S, Rosselló C (1999a) Compositional features of polysaccharides from Aloe vera (Aloe barbadensis Miller) plant tissues. Carbohydr Polym 39(2):109–117

    Article  CAS  Google Scholar 

  • Femenia A, Selvendran RR, Ring SG, Robertson JA (1999b) Effects of heat treatment and dehydration on properties of cauliflower fiber. J Agric Food Chem 47(2):728–732

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Bolaños J, Felizon B, Heredia A, Rodrıguez R, Guillen R, Jimenez A (2001) Steam-explosion of olive stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresour Technol 79(1):53–61

    Article  PubMed  Google Scholar 

  • Garcia-Amezquita LE (2018) Obtention and characterization of dietary fiber concentrates from fruit by-products. Modification of fiber composition by extrusion processes. [PhD]. , NL, MexicoTecnológico de Monterrey, Monterrey

    Google Scholar 

  • Garcia-Amezquita LE, Tejada-Ortigoza V, Campanella OH, Welti-Chanes J (2018a) Influence of drying method on the composition, physicochemical properties and prebiotic potential of dietary fibre concnetrates from fruit peels. J Food Qual., 9105237 2018:1–11

    Article  CAS  Google Scholar 

  • Garcia-Amezquita LE, Tejada-Ortigoza V, Heredia-Olea E, Serna-Saldívar SO, Welti-Chanes J (2018b) Differences in the dietary fiber content of fruits and their by-products quantified by conventional and integrated AOAC official methodologies. J Food Compos Anal 67:77–85

    Article  CAS  Google Scholar 

  • Garcia-Amezquita LE, Tejada-Ortigoza V, Serna-Saldivar SO, Welti-Chanes J (2018c) Dietary fiber concentrates from fruit and vegetable by-products: processing, modification, and application as functional ingredients. Food Bioprocess Technol 11:1439–1463

    Article  CAS  Google Scholar 

  • Garcia-Amezquita LE, Tejada-Ortigoza V, Perez-Carrillo E, Serna-Saldívar SO, Campanella OH, Welti-Chanes J (2019) Functional and compositional changes of orange peel fiber thermally-treated in a twin extruder. LWT 111:673–681

    Google Scholar 

  • Goesaert H, Brijs K, Veraverbeke WS, Courtin CM, Gebruers K, Delcour JA (2005) Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol 16(1–3):12–30

    Article  CAS  Google Scholar 

  • Grigelmo-Miguel N, Martı́n-Belloso O (1998) Characterization of dietary fiber from orange juice extraction. Food Res Int 31(5):355–361

    Article  Google Scholar 

  • Grigelmo-Miguel N, Abadías-Serós M, Martín-Belloso O (1999) Characterisation of low-fat high-dietary fibre frankfurters. Meat Sci 52:247–256

    Article  CAS  PubMed  Google Scholar 

  • Grigelmo-Miguel N, Carreras-Boladeras E, Martin-Belloso O (2001) Influence of the addition of peach dietary fiber in composition, physical properties and acceptability of reduced-fat muffins. Food Sci Technol Int 7(5):425–431

    Article  Google Scholar 

  • Guo X, Han D, Xi H, Rao L, Liao X, Hu X, Wu J (2012) Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: a comparison. Carbohydr Polym 88(2):441–448

    Article  CAS  Google Scholar 

  • Huang YL, Ma YS (2016) The effect of extrusion processing on the physiochemical properties of extruded orange pomace. Food Chem 192:363–369

    Article  CAS  PubMed  Google Scholar 

  • Jongaroontaprangsee S, Tritrong W, Chokanaporn W, Methacanon P, Devahastin S, Chiewchan N (2007) Effects of drying temperature and particle size on hydration properties of dietary fiber powder from lime and cabbage by-products. Int J Food Prop 10(4):887–897

    Article  CAS  Google Scholar 

  • L’homme C, Arbelot M, Puigserver A, Biagini A (2003) Kinetics of hydrolysis of fructooligosaccharides in mineral-buffered aqueous solutions: influence of pH and temperature. J Agric Food Chem 51(1):224–228

    Article  PubMed  CAS  Google Scholar 

  • Larrea MA, Chang YK, Martı́nez Bustos F (2005) Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chem 89(2):301–308

    Article  CAS  Google Scholar 

  • Lazaridou A, Biliaderis CG (2007) Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects. J Cereal Sci 46(2):101–118

    Article  CAS  Google Scholar 

  • Liang X, Ran J, Sun J, Wang T, Jiao Z, He H, Zhu M (2018) Steam-explosion-modified optimization of soluble dietary fiber extraction from apple pomace using response methodology. CyTA-J Food 16(1):20–26

    Article  CAS  Google Scholar 

  • Maphosa Y, Jideani VA (2016) Dietary fiber extraction for human nutrition—a review. Food Rev Intl 32(1):98–115

    Article  CAS  Google Scholar 

  • Marín FR, Soler-Rivas C, Benavente-García O, Castillo J, Pérez-Alvarez JA (2007) By-products from different citrus processes as a source of customized functional fibres. Food Chem 100(2):736–741

    Article  CAS  Google Scholar 

  • Martínez-Cervera S, Salvador A, Muguerza B, Moulay L, Fiszman SM (2011) Cocoa fibre and its application as a fat replacer in chocolate muffins. LWT Food Sci Technol 44(3):729–736

    Article  CAS  Google Scholar 

  • Mate JI, Quartaert C, Meerdink G, van’t Riet K (1998) Effect of blanching on structural quality of dried potato slices. J Agric Food Chem 46(2):676–681

    Article  CAS  PubMed  Google Scholar 

  • McKee LH, Latner TA (2000) Underutilized sources of dietary fiber: a review. Plant Foods Hum Nutr 55(4):285–304

    Article  CAS  PubMed  Google Scholar 

  • Méndez-García S, Martínez-Flores HE, Morales-Sanchez E (2011) Effect of extrusion parameters on some properties of dietary fiber from lemon (Citrus aurantifolia Swingle) residues. Afr J Biotechnol 10(73):16589–16593

    Article  CAS  Google Scholar 

  • Mrabet A, Rodríguez-Gutiérrez G, Guillén-Bejarano R, Rodríguez-Arcos R, Ferchichi A, Sindic M, Jiménez-Araujo A (2015) Valorization of Tunisian secondary date varieties (Phoenix dactylifera L.) by hydrothermal treatments: new fiber concentrates with antioxidant properties. LWT-Food Sci Technol 60(1):518–524

    Article  CAS  Google Scholar 

  • Pedreschi F, Travisany X, Reyes C, Troncoso E, Pedreschi R (2009) Kinetics of extraction of reducing sugar during blanching of potato slices. J Food Eng 91(3):443–447

    Article  CAS  Google Scholar 

  • Peerajit P, Chiewchan N, Devahastin S (2012) Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues. Food Chem 132(4):1891–1898

    Article  CAS  Google Scholar 

  • Phillips KM, Palmer JK (1991) Effect of freeze-drying and heating during analysis on dietary fiber in cooked and raw carrots. J Agric Food Chem 39(7):1216–1221

    Article  CAS  Google Scholar 

  • Raghavendra SN, Rastogi NK, Raghavarao KSMS, Tharanathan RN (2004) Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. Eur Food Res Technol 218(6):563–567

    Article  CAS  Google Scholar 

  • Rodriguez R, Jimenez A, Fernández-Bolanos J, Guillen R, Heredia A (2006) Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci Technol 17(1):3–15

    Article  CAS  Google Scholar 

  • Rosa PT, Parajó JC, Domínguez H, Moure A, Díaz-Reinoso B, Smith RL, Toyomizu M, Florusse LJ, Peters CJ, Goto M, Lucas S (2008) Supercritical and pressurized fluid extraction applied to the food industry. In: Meireles MAA (ed) Extracting bioactive compounds for food products. Theory and applications, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Shafiei M, Kabir MM, Zilouei H, Horváth IS, Karimi K (2013) Techno-economical study of biogas production improved by steam explosion pretreatment. Bioresour Technol 148:53–60

    Article  CAS  PubMed  Google Scholar 

  • Tejada-Ortigoza V, Garcia-Amezquita LE, Serna-Saldívar SO, Welti-Chanes J (2015) Advances in the functional characterization and extraction processes of dietary fiber. Food Eng Rev 8(3):251–271

    Article  CAS  Google Scholar 

  • Tejada-Ortigoza V, Garcia-Amezquita LE, Serna-Saldívar SO, Martín-Belloso O, Welti-Chanes J (2017a) High hydrostatic pressure and mild heat treatments for the modification of orange peel dietary fiber: effects on hygroscopic properties and functionality. Food Bioprocess Technol 11(1):110–121

    Article  CAS  Google Scholar 

  • Tejada-Ortigoza V, Garcia-Amezquita LE, Serna-Saldívar SO, Welti-Chanes J (2017b) The dietary fiber profile of fruit peels and functionality modifications induced by high hydrostatic pressure treatments. Food Sci Technol Int 23(5):396–402

    Article  CAS  PubMed  Google Scholar 

  • van Buggenhout S, Sila DN, Duvetter T, van Loey A, Hendrickx M (2009) Pectins in processed fruits and vegetables: part III—texture engineering. Compr Rev Food Sci Food Saf 8(2):105–117

    Article  CAS  Google Scholar 

  • Vasanthan T, Gaosong J, Yeung J, Li J (2002) Dietary fiber profile of barley flour as affected by extrusion cooking. Food Chem 77(1):35–40

    Article  CAS  Google Scholar 

  • Vega-Gálvez A, Puente-Díaz L, Lemus-Mondaca R, Miranda M, Torres MJ (2014) Mathematical modeling of thin-layer drying kinetics of cape gooseberry (Physalis peruviana L.). J Food Process Preserv 38(2):728–736

    Article  CAS  Google Scholar 

  • Vega-Galvez A, Zura-Bravo L, Lemus-Mondaca R, Martinez-Monzo J, Quispe-Fuentes I, Puente L, Di Scala K (2015) Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of cape gooseberry (Physalis peruviana L.). J Food Sci Technol 52(4):2304–2311

    Article  CAS  PubMed  Google Scholar 

  • Viuda-Martos M, Ruiz-Navajas Y, Martin-Sánchez A, Sánchez-Zapata E, Fernández-López J, Sendra E, Sayas-Barberá E, Navarro C, Pérez-Álvarez JA (2012) Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. J Food Eng 110(2):220–224

    Article  CAS  Google Scholar 

  • Wang X, Chen Q, Lü X (2014) Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll 38:129–137

    Article  CAS  Google Scholar 

  • Wang L, Xu H, Yuan F, Fan R, Gao Y (2015) Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chem 185:90–98

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu HM, Xie AJ, Zhu CY, Qin GY (2018) Dietary fiber extraction from defatted corn hull by hot-compressed water. Pol J Food Nutr Sci 68(2):133–140

    Article  CAS  Google Scholar 

  • Wennberg M, Ekvall J, Olsson K, Nyman M (2006) Changes in carbohydrate and glucosinolate composition in white cabbage (Brassica oleracea var. capitata) during blanching and treatment with acetic acid. Food Chem 95(2):226–236

    Article  CAS  Google Scholar 

  • Yeoh S, Zhang S, Shi J, Langrish TAG (2008) A comparison of different techniques for water-based extraction of pectin from orange peels. Chem Eng Commun 195(5):511–520

    Article  CAS  Google Scholar 

  • Zhang Z, Smith C, Li W (2014) Extraction and modification technology of arabinoxylans from cereal by-products: a critical review. Food Res Int 65:423–436

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Eduardo Garcia-Amezquita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia-Amezquita, L.E., Tejada-Ortigoza, V., Torres, J.A., Welti-Chanes, J. (2020). Extraction and Modification of Dietary Fiber Applying Thermal Processes. In: Welti-Chanes, J., Serna-Saldívar, S., Campanella, O., Tejada-Ortigoza, V. (eds) Science and Technology of Fibers in Food Systems. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-38654-2_14

Download citation

Publish with us

Policies and ethics