Skip to main content

Distributed Logging Service with Distributed Hash Table for Cloud

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11894)


The logging service on cloud is a critical component for administrators who maintain applications and solutions for end users. The service is usually a central server deployment to accept log messages from leaf computing nodes. Since several leaf computing nodes and their usages are dynamically changed for applications and solutions, the amount of generated log messages is also changed. This paper proposes the architecture and design for Distributed Logging Service (DLS) which can distribute processing powers and storage resources to leaf computing nodes with Distributed Hash Table (DHT). Those nodes generate log messages and also have DLS components locally. The evaluation results with the emulated environment show the feasibility of DLS with the scalability.


  • Distributed logging
  • Logging service
  • Cloud management
  • Distributed Hash Table

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-38651-1_15
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-38651-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. Bagnasco, S., Berzano, D., Guarise, A., Lusso, S., Masera, M., Vallero, S.: Monitoring of IaaS and scientific applications on the cloud using the elasticsearch ecosystem. J. Phys: Conf. Ser. 608, 012016 (2015)

    Google Scholar 

  2. Bagnasco, S., Berzano, D., Guarise, A., Lusso, S., Masera, M., Vallero, S.: Towards monitoring-as-a-service for scientific computing cloud applications using the elasticsearch ecosystem. J. Phys: Conf. Ser. 664, 022040 (2015)

    Google Scholar 

  3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016).

    CrossRef  Google Scholar 

  4. Chang, F., et al.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 4 (2008)

    CrossRef  Google Scholar 

  5. Chaves, S.A.D., Uriarte, R.B., Westphall, C.B.: Toward an architecture for monitoring private clouds. IEEE Commun. Mag. 49(12), 130–137 (2011).

    CrossRef  Google Scholar 

  6. Kubernetes Community: Logging architecture in kubernetes (2018).

  7. LogDNA Company: Logdna web site (2019).

  8. Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M.F., Morris, R.: Designing a DHT for low latency and high throughput. In: NSDI, vol. 4, pp. 85–98 (2004)

    Google Scholar 

  9. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles, SOSP 2007, pp. 205–220. ACM, New York (2007).

  10. Gormley, C., Tong, Z.: Elasticsearch: The Definitive Guide: A Distributed Real-Time Search and Analytics Engine. O’Reilly Media Inc., Newton (2015)

    Google Scholar 

  11. Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T., Shenker, S., Stoica, I.: Complex queries in DHT-based peer-to-peer networks. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 242–250. Springer, Heidelberg (2002).

    CrossRef  MATH  Google Scholar 

  12. Ikebe, M., Yoshida, K.: An integrated distributed log management system with metadata for network operation. In: 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems, pp. 747–750, July 2013.

  13. Jiang, C.B., Liu, I.H., Liu, C.G., Chen, Y.C., Li, J.S.: Distributed log system in cloud digital forensics. In: 2016 International Computer Symposium (ICS), pp. 258–263, December 2016.

  14. Jonas, E., et al.: Cloud programming simplified: a Berkeley view on serverless computing. Technical report UCB/EECS-2019-3, EECS Department, University of California, Berkeley, February 2019

    Google Scholar 

  15. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the world wide web. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC 1997, pp. 654–663. ACM, New York (1997).

  16. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

    CrossRef  Google Scholar 

  17. Lin, X., Wang, P., Wu, B.: Log analysis in cloud computing environment with hadoop and spark. In: 2013 5th IEEE International Conference on Broadband Network Multimedia Technology, pp. 273–276, November 2013.

  18. Mell, P., Grance, T.: The NIST definition of cloud computing. NIST special publication 800(145), 7 (2011).

  19. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J., et al.: Handling churn in a DHT. In: Proceedings of the USENIX Annual Technical Conference, Boston, MA, USA, vol. 6, pp. 127–140 (2004)

    Google Scholar 

  20. Shudo, K.: Overlay weaver (2006).

  21. Shudo, K., Tanaka, Y., Sekiguchi, S.: Overlay weaver: an overlay construction toolkit. In: Proceedings of Symposium on Advanced Computing Systems and Infrastructures, pp. 183–191 (2006)

    Google Scholar 

  22. Shudo, K., Tanaka, Y., Sekiguchi, S.: Overlay weaver: an overlay construction toolkit. Comput. Commun. 31(2), 402–412 (2008)

    CrossRef  Google Scholar 

  23. Shvachko, K., Kuang, H., Radia, S., Chansler, R., et al.: The hadoop distributed file system. In: MSST, vol. 10, pp. 1–10 (2010)

    Google Scholar 

  24. Sit, E., Morris, R., Kaashoek, M.F.: UsenetDHT: a low-overhead design for Usenet. In: Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2008, pp. 133–146. USENIX Association, Berkeley (2008).

  25. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003).

    CrossRef  Google Scholar 

  26. Takeda, A., Hashimoto, K., Kitagata, G., Zabir, S.M.S., Kinoshita, T., Shiratori, N.: A new authentication method with distributed hash table for P2P network. In: 22nd International Conference on Advanced Information Networking and Applications - Workshops (AINA Workshops 2008), pp. 483–488, March 2008.

  27. Tanenbaum, A.S., Van Steen, M.: Distributed Systems: Principles and Paradigms. Prentice-Hall, Upper Saddle River (2007)

    MATH  Google Scholar 

  28. Van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: a robust and scalable technology for distributed system monitoring, management, and data mining. ACM Trans. Comput. Syst. 21(2), 164–206 (2003).

    CrossRef  Google Scholar 

  29. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. HotCloud 10(10–10), 95 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Takayuki Kushida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kushida, T. (2020). Distributed Logging Service with Distributed Hash Table for Cloud. In: Hsu, CH., Kallel, S., Lan, KC., Zheng, Z. (eds) Internet of Vehicles. Technologies and Services Toward Smart Cities. IOV 2019. Lecture Notes in Computer Science(), vol 11894. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38650-4

  • Online ISBN: 978-3-030-38651-1

  • eBook Packages: Computer ScienceComputer Science (R0)