Skip to main content

Optimizing Partially Defined Black-Box Functions Under Unknown Constraints via Sequential Model Based Optimization: An Application to Pump Scheduling Optimization in Water Distribution Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11968))

Abstract

This paper proposes a Sequential Model Based Optimization framework for solving optimization problems characterized by a black-box, multi-extremal, expensive and partially defined objective function, under unknown constraints. This is a typical setting for simulation-optimization problems, where the objective function cannot be computed for some configurations of the decision/control variables due to the violation of some (unknown) constraint. The framework is organized in two consecutive phases, the first uses a Support Vector Machine classifier to approximate the boundary of the unknown feasible region within the search space, the second uses Bayesian Optimization to find a globally optimal (feasible) solution. A relevant difference with traditional Bayesian Optimization is that the optimization process is performed on the estimated feasibility region, only, instead of the entire search space. Some results on three 2D test functions and a real case study for the Pump Scheduling Optimization in Water Distribution Networks are reported. The proposed framework proved to be more effective and efficient than Bayesian Optimization approaches using a penalty for function evaluations outside the feasible region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Frazier, P.I.: Bayesian Optimization. In: Recent Advances in Optimization and Modeling of Contemporary Problems - INFORMS, pp. 255–278 (2018)

    Chapter  Google Scholar 

  2. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  3. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: A review of Bayesian Optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  4. Žilinskas, A., Žilinskas, J.: Global optimization based on a statistical model and simplicial partitioning. Comput. Math Appl. 44(7), 957–967 (2002)

    Article  MathSciNet  Google Scholar 

  5. Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep.-UK 8(1), 453 (2018)

    Article  Google Scholar 

  6. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8042-6

    Book  MATH  Google Scholar 

  7. Sergeyev, Y.D., Kvasov, D.E.: Deterministic Global Optimization: An Introduction to the Diagonal Approach. Springer, Berlin (2017). https://doi.org/10.1007/978-1-4939-7199-2

    Book  MATH  Google Scholar 

  8. Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization, vol. 9. Springer, Berlin (2008). https://doi.org/10.1007/978-0-387-74740-8

    Book  MATH  Google Scholar 

  9. Archetti, F., Betrò, B.: A priori analysis of deterministic strategies. In: Towards Global Optimization 2 (1978)

    Google Scholar 

  10. Archetti, F., Betrò, B.: Stochastic models and optimization. Bollettinodell’Unione Matematica Italiana 5(17-A), 295–301 (1980)

    MathSciNet  MATH  Google Scholar 

  11. Archetti, F., Betrò, B.: A probabilistic algorithm for global optimization. Calcolo 16, 335–343 (1979)

    Article  MathSciNet  Google Scholar 

  12. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of ACM-SIGKDD, pp. 847–855 (2013)

    Google Scholar 

  13. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information, pp. 2962–2970 (2015)

    Google Scholar 

  14. Candelieri, A., Archetti, F.: Global optimization in machine learning: the design of a predictive analytics application. Soft Comput. 1–9 (2018)

    Google Scholar 

  15. Galuzzi, B.G., Perego, R., Candelieri, A., Archetti, F.: Bayesian optimization for full waveform inversion. In: Daniele, P., Scrimali, L. (eds.) New Trends in Emerging Complex Real Life Problems. ASS, vol. 1, pp. 257–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00473-6_28

    Chapter  Google Scholar 

  16. Sergeyev, Y.D., Pugliese, P., Famularo, D.: Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints. Math. Program. 96(3), 489–512 (2003)

    Article  MathSciNet  Google Scholar 

  17. Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. 10(2), 237–246 (2016)

    Article  MathSciNet  Google Scholar 

  18. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Springer, Boston (2013). https://doi.org/10.1007/978-1-4615-4677-1

    Book  MATH  Google Scholar 

  19. Donskoi, V.I.: Partially defined optimization problems: an approach to a solution that is based on pattern recognition theory. J. Sov. Mathematics 65(3), 1664–1668 (1993)

    Article  Google Scholar 

  20. Rudenko, L.I.: Objective functional approximation in a partially defined optimization problem. J. Math. Sci. 72(5), 3359–3363 (1994)

    Article  MathSciNet  Google Scholar 

  21. Sergeyev, Y.D., Kvasov, D.E., Khalaf, F.M.: A one-dimensional local tuning algorithm for solving GO problems with partially defined constraints. Optim. Lett. 1(1), 85–99 (2007)

    Article  MathSciNet  Google Scholar 

  22. Hernández-Lobato, J.M., Gelbart, M.A., Adams, R.P., Hoffman, M.W., Ghahramani, Z.: A general framework for constrained Bayesian optimization using information-based search. J. Mach. Learn. Res. 17(1), 5549–5601 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Gorji Daronkolaei, A., Hajian, A., Custis, T.: Constrained bayesian optimization for problems with piece-wise smooth constraints. In: Bagheri, E., Cheung, J.C.K. (eds.) Canadian AI 2018. LNCS (LNAI), vol. 10832, pp. 218–223. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89656-4_18

    Chapter  Google Scholar 

  24. Picheny, V., Gramacy, R.B., Wild, S., Le Digabel, S.: Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian. In Advances in Neural Information Processing Systems, pp. 1435–1443 (2016)

    Google Scholar 

  25. Feliot, P., Bect, J., Vazquez, E.: A bayesian approach to constrained single-and multi-objective optimization. J. Global Optim. 67(1–2), 97–133 (2017)

    Article  MathSciNet  Google Scholar 

  26. Gramacy, R.B., Lee, H.K.M., Holmes, C., Osborne, M.: Optimization Under Unknown Constraints. In: Bayesian Statistics 9 (2012)

    Google Scholar 

  27. Bernardo, J., et al.: Optimization under unknown constraints. Bayesian Stat. 9(9), 229 (2011)

    MathSciNet  Google Scholar 

  28. Hernández-Lobato, J.M., Gelbart, M.A., Hoffman, M.W., Adams, R.P., Ghahramani, Z.: Predictive entropy search for bayesian optimization with unknown constraints. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37 (2015)

    Google Scholar 

  29. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  30. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008). https://doi.org/10.1007/978-0-387-77242-4

    Book  MATH  Google Scholar 

  31. Basudhar, A., Dribusch, C., Lacaze, S., Missoum, S.: Constrained efficient global optimization with support vector machines. Struct. Multidiscip. Optim. 46(2), 201–221 (2012)

    Article  Google Scholar 

  32. Tsai, Y.A., et al.: Stochastic optimization for feasibility determination: an application to water pump operation in water distribution network. In: Winter Simulation Conference 2018 (WSC 2018) December 9–12, Gothenburg, Sweden (2018)

    Google Scholar 

  33. Candelieri, A., Perego, R., Archetti, F.: Bayesian optimization of pump operations in water distribution systems. J. Global Optim. 71(1), 213–235 (2018)

    Article  MathSciNet  Google Scholar 

  34. Letham, B., Karrer, B., Ottoni, G., Bakshy, E.: Constrained Bayesian optimization with noisy experiments. Bayesian Anal. 14, 495–519 (2018)

    Article  MathSciNet  Google Scholar 

  35. Hartfiel, D.J., Curry, G.L.: On optimizing certain nonlinear convex functions which are partially defined by a simulation process. Math. Program. 13(1), 88–93 (1977)

    Article  MathSciNet  Google Scholar 

  36. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting: No regret and experimental design. In: Proceedings of International Conference on Machine Learning, pp. 1015–1022 (2010)

    Google Scholar 

  37. Neve, A.G., Kakandikar, G.M., Kulkarni, O.: Application of grasshopper optimization algorithm for constrained and unconstrained test functions. Int. J. Swarm Intel. EvolComput. 6(165), 2 (2017)

    Google Scholar 

  38. Simionescu, P.A., Beale, D.G.: New concepts in graphic visualization of objective functions. In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 891–897 (2002)

    Google Scholar 

  39. Mishra, S.K.: Some new test functions for global optimization and performance of repulsive particle swarm method. MPRA Paper No. 2718 (2008)

    Google Scholar 

  40. Castro Gama, M.E., Pan, Q., Salman, M.A.: Jonoski, Multivariate optimization to decrease total energy consumption in the water supply system of Abbiategrasso (Milan, Italy). Environ. Eng. Manag. J. 14(9), 2019–2029 (2015)

    Article  Google Scholar 

  41. Rossman, L.A.: EPANET2 User’s Manual. U.S. Environmental Protection Agency, Washington, DC (2000)

    Google Scholar 

  42. Castro-Gama, M., Pan, Q., Lanfranchi, E.A., Jomoski, A., Solomatine, D.P.: Pump scheduling for a large water distribution network. Milan, Italy. Procedia Eng. 186, 436–443 (2017)

    Article  Google Scholar 

  43. Huang, D., Allen, T.T., Notz, W.I., Zheng, N.: Global optimization of stochastic black-box systems via sequential Kriging meta-models. J. Global Optim. 3(34), 441–466 (2006)

    Article  MathSciNet  Google Scholar 

  44. Hoffman, M.D., Brochu, E., De Freitas, N.: Portfolio Allocation for Bayesian Optimization. In: UAI, pp. 327–336 (2011)

    Google Scholar 

Download references

Acknowledgements

This study has been partially supported by the Italian project “PerFORM WATER 2030” – programme POR (Programma Operativo Regionale) FESR (Fondo Europeo di Sviluppo Regionale) 2014–2020, innovation call “Accordi per la Ricerca e l’Innovazione” (“Agreements for Research and Innovation”) of Regione Lombardia, (DGR N. 5245/2016 - AZIONE I.1.B.1.3 – ASSE I POR FESR 2014–2020) – CUP E46D17000120009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Candelieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Candelieri, A., Galuzzi, B., Giordani, I., Perego, R., Archetti, F. (2020). Optimizing Partially Defined Black-Box Functions Under Unknown Constraints via Sequential Model Based Optimization: An Application to Pump Scheduling Optimization in Water Distribution Networks. In: Matsatsinis, N., Marinakis, Y., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2019. Lecture Notes in Computer Science(), vol 11968. Springer, Cham. https://doi.org/10.1007/978-3-030-38629-0_7

Download citation

Publish with us

Policies and ethics