Skip to main content

Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains

  • Chapter
  • First Online:
Knowledge Engineering Tools and Techniques for AI Planning

Abstract

Automated planning tools are complex pieces of software that take declarative domain descriptions and generate plans from domains and problems. New users often find it challenging to understand the plan generation process, while experienced users often find it difficult to track semantic errors and efficiency issues. In response, we develop a cloud-based planning tool with code editing and state-space visualization capabilities that simplifies this process. The code editor focuses on visualizing the domain, problem, and resulting sample plan, helping the user see how such descriptions are connected without changing context. The visualization tool explores two alternative visualizations aimed at illustrating the operation of the planning process and how the domain dynamics evolve during plan execution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    JSON (JavaScript Object Notation) is an open-standard format for structuring data.

  2. 2.

    https://github.com/thlorenz/brace.

  3. 3.

    Reingold–Tilford is an algorithm for an efficient tidy arrangement of layered nodes. We use an implementation based on a D3 example available at: http://bl.ocks.org/mbostock/4063550.

  4. 4.

    https://github.com/pucrs-automated-planning/syllabus.

  5. 5.

    https://ickeps2016.wordpress.com.

  6. 6.

    http://planning.domains.

  7. 7.

    https://github.com/Pold87/myPDDL.

  8. 8.

    https://github.com/KCL-Planning/VAL.

  9. 9.

    https://github.com/patrikhaslum/INVAL.

  10. 10.

    https://github.com/guicho271828/ArriVAL.

  11. 11.

    https://github.com/tvaquero/itsimple.

References

  1. Bylander, T.: The Computational Complexity of Propositional STRIPS Planning. Journal of Artificial Intelligence Research (JAIR) 69, 165–204 (1994)

    Article  MathSciNet  Google Scholar 

  2. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving to problem solving. Journal of Artificial Intelligence Research (JAIR) 2(3), 189–208 (1971)

    Article  Google Scholar 

  3. Gerevini, A., Long, D.: Plan Constraints and Preferences in PDDL3. The Language of the Fifth International Planning Competition. Technical Report, Department of Electronics for Automation, University of Brescia, Italy (2005)

    Google Scholar 

  4. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning—Theory and Practice. Elsevier (2004)

    Google Scholar 

  5. Glinskỳ, R., Barták, R.: VisPlan–Interactive Visualisation and Verification of Plans. Proceedings of the Workshop on Knowledge Engineering for Planning and Scheduling (KEPS) pp. 134–138 (2011)

    Google Scholar 

  6. Ha, T.T.: Theory and design of digital communication systems. Cambridge University Press (2010)

    Google Scholar 

  7. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal 29(2), 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  8. Helmert, M.: The Fast Downward Planning System. Journal of Artificial Intelligence Research 26, 191–246 (2006)

    Article  Google Scholar 

  9. Hoffmann, J.: The Metric-FF Planning System: Translating “Ignoring Delete Lists” to Numeric State Variables. Computing Research Repository (CoRR) abs/1106.5271 (2011), http://arxiv.org/abs/1106.5271

  10. Hoffmann, J.: The TorchLight Tool: Analyzing Search Topology Without Running Any Search. In: Proceedings of the System Demonstrations, in the 21th International Conference on Automated Planning and Scheduling. pp. 37–41 (2011)

    Google Scholar 

  11. Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation Through Heuristic Search. Journal of Artificial Intelligence Research (JAIR) 14(1), 253–302 (May 2001)

    Article  Google Scholar 

  12. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and mixed initiative planning using PDDL. In: 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004), 15–17 November 2004, Boca Raton, FL, USA. pp. 294–301 (2004)

    Google Scholar 

  13. Kuwata, Y., Cohen, P.R.: Visualization Tools for Real-Time Search Algorithms. Computer Science Technical Report (1993)

    Google Scholar 

  14. Magnaguagno, M.C., Pereira, R.F., Meneguzzi, F.: DOVETAIL - An Abstraction for Classical Planning Using a Visual Metaphor. In: Proceedings of FLAIRS, 2016. (2016), http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS16/paper/view/12966

    Google Scholar 

  15. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL − The Planning Domain Definition Language. Technical Report – Yale Center for Computational Vision and Control (1998)

    Google Scholar 

  16. Plch, T., Chomut, M., Brom, C., Barták, R.: Inspect, edit and debug PDDL documents: Simply and efficiently with PDDL Studio. In: Proceedings of ICAPS’09. pp. 15–18 (2012)

    Google Scholar 

  17. Raimondi, F., Pecheur, C., Brat, G.: PDVer, a Tool to Verify PDDL Planning Domains. In: Proceedings of ICAPS’09 Workshop on Verification and Validation of Planning and Scheduling Systems, Thessaloniki, Greece (2009)

    Google Scholar 

  18. Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Transactions on Software Engineering (2), 223–228 (1981)

    Article  Google Scholar 

  19. Richter, S., Westphal, M.: The LAMA planner: Guiding cost-based anytime planning with landmarks. Journal of Artificial Intelligence Research (JAIR) 39(1), 127–177 (2010)

    Article  Google Scholar 

  20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edn. (2009)

    MATH  Google Scholar 

  21. Simpson, R.M., Kitchin, D.E., McCluskey, T.L.: Planning domain definition using GIPO. Knowledge Eng. Review 22(2), 117–134 (2007). https://doi.org/10.1017/S0269888907001063

    Article  Google Scholar 

  22. Strobel, V., Kirsch, A.: Planning in the Wild: Modeling Tools for PDDL. In: Joint German/Austrian Conference on Artificial Intelligence. pp. 273–284. Springer (2014)

    Google Scholar 

  23. Tu, Y., Shen, H.W.: Visualizing Changes of Hierarchical Data using Treemaps. IEEE Transactions on Visualization and Computer Graphics 13(6), 1286–1293 (Nov 2007). https://doi.org/10.1109/TVCG.2007.70529

    Article  Google Scholar 

  24. Vallati, M., Chrpa, L., McCluskey, T.L.: What you always wanted to know about the deterministic part of the International Planning Competition (IPC) 2014 (but were too afraid to ask). Knowledge Engineering Review 33, 383 (2018)

    Article  Google Scholar 

  25. Vaquero, T., Tonaco, R., Costa, G., Tonidandel, F., Silva, J.R., Beck, J.C.: itSIMPLE 4.0: Enhancing the modeling experience of planning problems. In: Proceedings of ICAPS’12. pp. 11–14 (2012)

    Google Scholar 

  26. Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications, Second Edition - 360 Degree Business. A. K. Peters, Ltd., Natick, MA, USA, 2nd edn. (2015)

    Book  Google Scholar 

  27. Wilson, J.M.: Gantt charts: A centenary appreciation. European Journal of Operational Research 149(2), 430–437 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge the support given by CAPES/Pro-Alertas (88887.115590/ 2015-01) and CNPQ within process number 305969/2016-1 under the PQ fellowship.

This research was achieved in cooperation with HP Brasil Indústria e Comércio de Equipamentos Eletrônicos LTDA using incentives of Brazilian Informatics Law (Law n 8.2.48 of 1991).

Part of this research was also financed by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício C. Magnaguagno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magnaguagno, M.C., Pereira, R.F., Móre, M.D., Meneguzzi, F. (2020). Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains. In: Vallati, M., Kitchin, D. (eds) Knowledge Engineering Tools and Techniques for AI Planning. Springer, Cham. https://doi.org/10.1007/978-3-030-38561-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38561-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38560-6

  • Online ISBN: 978-3-030-38561-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics