Skip to main content

Hemp Fiber as a Sustainable Raw Material Source for Textile Industry: Can We Use Its Potential for More Eco-Friendly Production?

  • Chapter
  • First Online:
Sustainability in the Textile and Apparel Industries

Abstract

Sustainable production defines an environmental friendly production that we produce without changing the balance of the nature. Processes and the utilized materials should be renewable, and our whole production should be harmless so that nature can recover itself in an indigenous way. All natural fibers are biodegradable and sustainable, and consequently, they are commonly called as biofibers. Providing a sustainable production chain for textile processes requires individual attention for each input in the first place. One of the most important parts of these inputs is raw material selection and therefore fiber supply. Right at this point, hemp fiber step forwards and shines out with its huge sustainable production potential for textile industry. In this chapter, sustainable and biodegradable hemp fiber, which is an alternative to cotton and petroleum-based synthetic fibers, for textile raw material sourcing is reviewed in detail. The parameters that make this fiber sustainable are also investigated. Present common and special uses and possible future innovative alternatives of hemp fibers for technical textiles production are also stated. Mainly, composite material production with this sustainable fiber is reviewed for a replacement of nonsustainable synthetic competitors. When sustainable composite materials are produced not only ecofriendly textile production is carried out but also other materials can be produced with an ecofriendly path leading to more sustainable world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blackburn RS (2009) Sustainable textiles life cycle and environmental impact. Woodhead Publishing, Cambridge, UK

    Google Scholar 

  2. Gordon S, Hsieh YL (2007) Cotton: science and technology. Woodhead Publishing, Cambridge, UK

    Book  Google Scholar 

  3. Tobler-Rohr M (2011) Handbook of sustainable textile production. Woodhead Publishing, Cambridge, UK

    Book  Google Scholar 

  4. Ferrigno S, Gudagnini R, Tyrell K (2017) Is cotton conquering its chemical addiction? A review of pesticide use in global cotton production. Pesticide Action Network UK Report, Brighton

    Google Scholar 

  5. Kooistra K, Thermorshuizen A, Pyburn R (2006) The sustainability of cotton, Consequences for man and environment. Wageningen University Report no: 223. Wageningen, The Netherlands

    Google Scholar 

  6. IEEP (Institute for European Environmental Policy) Stage I of a Report to Defra (2005) The environmental impacts of trade liberations and potential flanking measures. London

    Google Scholar 

  7. Blackburn RS (2005) Biodegradable and sustainable fibres. Woodhead Publishing, Cambridge, UK

    Book  Google Scholar 

  8. Li L, Frey M, Browning KJ (2010) Biodegradability study on cotton and polyester fabrics. J Eng Fibers Fabr 5(4):42–53

    Google Scholar 

  9. Amaducci S, Scordia D, Liu FH, Zhang Q, Guo H, Testa G, Cosentino SL (2015) Key cultivation techniques for hemp in Europe and China. Ind Crop Prod 68:2–16

    Article  Google Scholar 

  10. Fike J (2016) Industrial hemp: renewed opportunities for an ancient crop. Crit Rev Plant Sci 35:406–424

    Article  Google Scholar 

  11. van der Werf HMG (2004) Life cycle analysis of field production of fibre hemp, the effect of production practices on environmental impacts. Euphytica 140:13–23

    Article  Google Scholar 

  12. Salentijn EMJ, Zhang Q, Amaducci S, Yang M, Trindade LM (2015) New developments in fiber hemp (Cannabis sativa L.) breeding. Ind Crop Prod 68:32–41

    Article  Google Scholar 

  13. Tanga K, Struik PC, Yin X, Thouminot C, Bjelková M, Stramkale V, Amaducci S (2016) Comparing hemp (Cannabis sativa L.) cultivars for dual-purposeproduction under contrasting environments. Ind Crop Prod 87:33–44

    Article  Google Scholar 

  14. http://www.fao.org/faostat/en/#data/QC. Accessed June 2019

  15. http://www.fao.org/faostat/en/#data/QC/visualize. Accessed June 2019

  16. Amaducci S, Pelatti F, Bonatti PM (2005) Fibre development in hemp (Cannabis sativa L.) as affected by agrotechnique. J Industr Hemp 10(1):31–48

    Article  Google Scholar 

  17. Müssig J (2010) Industrial applications of natural fibres. Wiley, West Sussex

    Book  Google Scholar 

  18. van der Werf HMG (2002) Hemp production in France. J Industr Hemp 7(2):105–109

    Article  Google Scholar 

  19. McPartland JM, Cutler S, McIntosh DJ (2004) Hemp production in aotearoa. J Industr Hemp 9(1):105–115

    Article  Google Scholar 

  20. McPartland JM, Clarke RC, Watson DP (2000) Hemp diseases and pests. CABI Publishing, Oxon

    Google Scholar 

  21. van der Werf HMG, van Geel WCA, van Gils LJC, Haverkort AJ (1995) Nitrogen fertilization and row width affect self-thinning and productivity of fibre hemp (Cannabis sativa L.). Field Crop Res 42:27–37

    Article  Google Scholar 

  22. Turunen L, van der Werf HMG (2007) The production chain of hemp and flax textile yarn and its environmental impacts. J Industr Hemp 12(2):43–66

    Article  Google Scholar 

  23. Yılmaz I, Akcaoz H, Ozkan B (2004) An analysis of energy use and input costs of cotton production in Turkey. New Medit N 2:58–64

    Google Scholar 

  24. Tahir PM, Ahmed AB, SaifulAzry SOA, Ahmed Z (2011) Retting processes of some bast plant fibers and its effect on fiber quality. A review. BioResources 6(4):5260–5281

    Google Scholar 

  25. Riberio A, Pochart P, Day A, Mennuni S, Bono P, Baret J, Spadoni J, Mangin I (2015) Microbial diversity observed during hemp retting. Appl Microbiol Biotechnol 99:4471–4484

    Article  Google Scholar 

  26. Bleuze L, Lashermes G, Alavoine G, Recous S, Chabbert B (2018) Tracking the dynamics of hemp dew retting under controlled environmental conditions. Ind Crop Prod 123:55–63

    Article  Google Scholar 

  27. Nair GR, Lyew D, Yaylayan V, Raghavan V (2015) Application of microwave energy in degumming of hemp stems for the processing of fibres. Biosyst Eng 131:23–31

    Article  Google Scholar 

  28. Nykter M, Kymalainen H, Thomsen AB, Lilholt H, Koponen H, Sjöberg A, Thygesen A (2008) Effects of thermal and enzymatic treatments and harvesting time on the microbial quality and chemical composition of fibre hemp (Cannabis sativa L.). Biomass Bioenergy 32:392–399

    Article  Google Scholar 

  29. Liu M, Ale MT, Kalaczkowski B, Fernando D, Daniel G, Meyer AS, Thygesen A (2017) Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites. AMB Express 7:1–15

    Article  Google Scholar 

  30. Candilo DM, Ranalli P, Bozzi C, Focher B, Mastoromei G (2000) Preliminary results of tests facing with the controlled retting of hemp. Ind Crop Prod 11:197–203

    Article  Google Scholar 

  31. Trunen L, Van der Werf HMG (2006) Life cycle analyses of hemp textile yarn – a comparison of three hemp fiber processing scenarios and a flax scenario – Report of EU Project Hemp-SYS

    Google Scholar 

  32. Hurren CJ, Wang X, Dennis HGS, Clarke AFK (2002) Evaluation of bast fibre retting systems on hemp. 82nd Textile Institute Conference, Cairo, Egypt

    Google Scholar 

  33. Mazian B, Bergeret A, Benezet J, Malhautier L (2018) Influence of field retting duration on the biochemical, microstructural, thermal and mechanical properties of hemp fibres harvested at the beginning of flowering. Ind Crop Prod 116:170–181

    Article  Google Scholar 

  34. Liu M, Fernando D, Daniel G, Madsen B, Meyer AS, Ale MT, Thygesen A (2015) Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Ind Crop Prod 69:29–39

    Article  Google Scholar 

  35. Placet V, Day A, Beaugrand J (2017) The influence of unintended field retting on the physicochemical and mechanical properties of industrial hemp bast fibres. J Mater Sci 52:5759–5777

    Article  Google Scholar 

  36. Liu M, Silva ASS, Fernando D, Meyer AS, Madsen B, Daniel G, Thygessen A (2016) Controlled retting of hemp fibres: effect of hydrothermal pre-treatment and enzymatic retting on the mechanical properties of unidirectional hemp/epoxy composites. Compos Part A 88:253–262

    Article  Google Scholar 

  37. Liu J, Guan Z, Li Z (2018) Application of cryogenic and mechanical treatment in degumming of hemp stems. Biosyst Eng 174:144–152

    Article  Google Scholar 

  38. Zhang LL, Zhu RY, Chen CY, Feng XX (2008) Seawater-retting treatment of hemp and characterization of bacterial strains involved in the retting process. Process Biochem 43:1195–1201

    Article  Google Scholar 

  39. Garcia-Jaldon C, Dupeyre D, Vignon MR (1998) Fibres from semi-retted hemp bundels by steam explosion treatment. Biomass Bioenergy 14(3):251–260

    Article  Google Scholar 

  40. Gumpta PC, Sen K, Sen SK (1976) Degumming of decorticated ramie for textile purposes. Cellulose Chem Technol 10:285–291

    Google Scholar 

  41. Henriksson G, Eriksson KEL, Kimmel L, Akin DE (1998) Chemical/physical retting of flax using detergent and oxalic acid at high pH. Text Res J 68(12):942–947

    Article  Google Scholar 

  42. Fan X, Liu Z, Liu Z (2010) A novel chemical degumming process for ramie bast fiber. Text Res J 80(19):2046–2051

    Article  Google Scholar 

  43. Morrison WH, Akin DE, Ramaswamy GN, Baldwin B (1996) Evaluating chemical retted kenaf using chemical, histochemical and micro-spectrophotometric analysis. Text Res J 66(10):651–656

    Article  Google Scholar 

  44. Ramaswamy GN, Ruff CG, Boyd CR (1994) Effect of bacterial and chemical retting on kenaf fibre quality. Text Res J 64(5):305–308

    Article  Google Scholar 

  45. Franck RR (2005) Bast and other plant fibres. Woodhead Publishing, Cambridge, UK

    Book  Google Scholar 

  46. Kozlowski RM (2012) Handbook of natural fibers, vol volume I. Woodhead Publishing, Cambridge, UK

    Book  Google Scholar 

  47. Kozlowski RM (2012) Handbook of natural fibers, vol volume II. Woodhead Publishing, Cambridge, UK

    Book  Google Scholar 

  48. Jawaid M, Tahir PM, Saba N (2017) Lignocellulosic fibre and biomass-based composite materials. Woodhead Publishing, Cambridge, UK

    Google Scholar 

  49. Pickering KI, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A 83:98–112

    Article  Google Scholar 

  50. Long AC (2005) Design and manufacture of textile composites. Woodhead Publishing, Cambridge, UK

    Book  Google Scholar 

  51. Rana S, Fangueiro R (2016) Fibrous and textile materials for composite applications. Springer, Singapore

    Book  Google Scholar 

  52. Messiry ME (2017) Natural fiber textile composite engineering. Apple Academic Press, Oakville

    Book  Google Scholar 

  53. Pil L, Bensadoun F, Pariset J, Verpoest I (2016) Why are designers fascinated by flax and hemp fibre composites? Compos Part A 83:193–205

    Article  Google Scholar 

  54. Mazzanti V, Pariante R, Bonanno A, de Ballesteros OR, Mollica F, Filippone G (2019) Reinforcing mechanisms of natural fibers in green composites: role of fibers morphology in a PLA/hemp model system. Compos Sci Technol 180:51–59

    Article  Google Scholar 

  55. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915

    Article  Google Scholar 

  56. Miritoiu CM, Stanescu MM, Burada CO, Bolcu D, Padeanu A, Bolcu A (2019) Comparisons between some composite materials reinforced with hemp fibers. Mater Today Proc 12:499–507

    Article  Google Scholar 

  57. Rosa ADL, Cozzo G, Latteri A, Mancini G, Recca A, Cicala G (2013) A comparative life cycle assessment of a composite component for automotive. Chem Eng Trans 32:1723–1728

    Google Scholar 

  58. Musio S, Müssig J, Amaducci S (2018) Optimizing hemp fiber production for high performance composite applications. Front Plant Sci 9:1702

    Article  Google Scholar 

  59. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  60. Ray D, Sarkar BK, Rana AK, Rose NR (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24(2):129

    Article  Google Scholar 

  61. Vaisanen T, Batello P, Lappalainen R, Tomppo L (2018) Modification of hemp fibers (Cannabis Sativa L.) for composite applications. Ind Crop Prod 111:422–429

    Article  Google Scholar 

  62. Mwaikambo LY, Ansell MP (1999) The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angewandte Makromolekulare Chemie 272:108–116

    Article  Google Scholar 

  63. Morrison III WH, Archibald DD, Sharma HSS, Akin DE (2000) Chemical and physical characterization of water- and dew-retted flax fibers. Ind Crop Prod 12(1):39–46

    Article  Google Scholar 

  64. Panthapulakkal S, Sain M (2007) Injection-molded short hemp fiber/glass fiber- reinforced polypropylene hybrid composites-mechanical, water absorption and thermal properties. J Appl Polym Sci 103:2432–2441

    Article  Google Scholar 

  65. Mohanty AK, Wibowo A, Misra M, Drzal LT (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos Part A 35:363–370

    Article  Google Scholar 

  66. Sawpan MA, Pickering KL, Fernyhough A (2011) Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos Part A 42:310–319

    Article  Google Scholar 

  67. Hu R, Lim J (2011) Fabrication and mechanical properties of completely biodegrdable hemp fiber reinforced polylactic acid composites. J Compos Mater 41(13):1655–1669

    Article  Google Scholar 

  68. Islam MS, Pickering KI, Foreman NJ (2010) Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Compos Part A 41:596–603

    Article  Google Scholar 

  69. Sarasini F, Tirilo J, Puglia D, Kenny JM, Dominici F, Santulli C, Tofani M, De Santis R (2015) Effect of different lignocellulosic fibres on poly(ɛ-caprolactone)-based composites for potential applications in orthotics. RSC Adv 5:23798–23809

    Article  Google Scholar 

  70. Girones J, Lopez JP, Mutje P, Carvalho AJF, Curvelo AAS, Vilaseca F (2015) Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Compos Sci Technol 72:858–863

    Article  Google Scholar 

  71. Li J, Ben G, Yang J (2014) Fabrication of hemp fiber-reinforced green composites with organoclay-filled poly(butylene succinate) matrix by pultrusion process. Sci Eng Compos Mater. 21(2):289–294

    Google Scholar 

  72. Jami T, Karade SR, Singh LP (2019) A review of the properties of hemp concrete for green building applications. J Clean Prod 239(1–17):117852

    Article  Google Scholar 

  73. Niyigen C, Amziane S, Chateauneuf A (2019) Assessing the impact of calculation methods on the variability of Young’s modulus for hemp concrete material. Constr Build Mater 198:332–344

    Article  Google Scholar 

  74. Lemeurs MD, Gle P, Menibus AHD (2018) Acoustical properties of hemp concretes for buildings thermalinsulation: application to clay and lime binders. Constr Build Mater 160:462–474

    Article  Google Scholar 

  75. Gourley E, Gle P, Marceau S, Foy C, Moscardelli S (2017) Effect of water content on the acoustical and thermal properties of hemp concretes. Constr Build Mater 139:513–523

    Article  Google Scholar 

  76. Pantawee S, Sinsiri T, Jatarapitakkul C, Chindraprasirt P (2017) Utilization of hemp concrete using hemp shiv as coarse aggregate with aluminium sulfate [Al2(SO4)3] and hydrated lime [Ca(OH)2] treatment. Constr Build Mater 156:435–442

    Article  Google Scholar 

  77. Arizzi a BM, Sanchez IM, Molina E, Cultrone G (2018) Optimization of lime and clay-based hemp-concrete wall formulations for a successful lime rendering. Constr Build Mater 184:76–86

    Article  Google Scholar 

  78. Baduge SK, Mendis P, Nicolas RS, Nguyen K (2019) Performance of lightweight hemp concrete with alkali-activated cenosphere binders exposed to elevated temperature. Constr Build Mater 224:158–172

    Article  Google Scholar 

  79. Sinka M, Heede PV, Belie ND, Bajare D, Sahmenko G, Korjakins A (2018) Comparative life cycle assessment of magnesium binders as an alternative for hemp concrete. Resour Conserv Recycl 133:288–299

    Article  Google Scholar 

  80. Rubesa IN, Markovic B, Gojevic A, Brdaric J (2018) Effect of hemp fibers on fire resistance of concrete. Constr Build Mater 184:473–484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Avinc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gedik, G., Avinc, O. (2020). Hemp Fiber as a Sustainable Raw Material Source for Textile Industry: Can We Use Its Potential for More Eco-Friendly Production?. In: Muthu, S., Gardetti, M. (eds) Sustainability in the Textile and Apparel Industries. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-38541-5_4

Download citation

Publish with us

Policies and ethics