Skip to main content

The Establishment of the Standard Cosmological Model Through Observations

  • Chapter
  • First Online:
Reviews in Frontiers of Modern Astrophysics

Abstract

Over the last decades, observations with increasing quality have revolutionized our understanding of the general properties of the Universe. Questions posed for millenia by mankind about the origin, evolution and structure of the cosmos have found an answer. This has been possible mainly thanks to observations of the Cosmic Microwave Background, of the large-scale distribution of matter structure in the local Universe, and of type Ia supernovae that have revealed the accelerated expansion of the Universe. All these observations have successfully converged into the so-called “concordance model”. In spite of all these observational successes, there are still some important open problems, the most obvious of which are what generated the initial matter inhomogeneities that led to the structure observable in today’s Universe, and what is the nature of dark matter, and of the dark energy that drives the accelerated expansion. In this chapter I will expand on the previous aspects. I will present a general description of the Standard Cosmological Model of the Universe, with special emphasis on the most recent observations that have allowed to establish this model. I will also discuss the shortfalls of this model, its most pressing open questions, and will briefly describe the observational programmes that are being planned to tackle these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, even before this, the CMB had been indirectly detected by Adams [4] through the local excitation of CN molecules in our Galaxy. This excitation was attributed to some kind of “unknown” radiation with temperature ∼2.3 K.

  2. 2.

    A more detailed explanation of the derivation of the Friedmann equations can be found in classical references like [6].

  3. 3.

    A didactic review on CMB polarisation theory can be found in [32].

  4. 4.

    For a brief review of cosmology distance definitions see [39].

  5. 5.

    A comprehensive review on galaxy clustering and BAO theory can be found in [41].

References

  1. G. Gamow, Phys. Rev. 70, 572 (1946)

    Article  ADS  Google Scholar 

  2. R.A. Alpher, R. Herman, Nature 62, 774 (1948)

    Article  ADS  Google Scholar 

  3. H. Bondi, T. Gold, Mon. Not. R. Astron. Soc. 108, 252 (1948)

    Article  ADS  Google Scholar 

  4. W.S. Adams, Astrophys. J. 93, 11 (1941)

    Article  ADS  Google Scholar 

  5. A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  6. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)

    Google Scholar 

  7. F. Zwicky, Helv. Phys. Acta 6, 110 (1933)

    ADS  Google Scholar 

  8. V.C. Rubin, W.K. Ford Jr., N. Thonnard, Astrophys. J. 238, 471 (1980)

    Article  ADS  Google Scholar 

  9. D.J. Fixsen, Astrophys. J. 707, 916 (2009)

    Article  ADS  Google Scholar 

  10. A.A. Starobinsky, ZhETF Pisma Redaktsiiu 30, 719 (1979)

    ADS  Google Scholar 

  11. A.H. Guth, Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  12. A. Linde, Inflationary Cosmology, vol. 738 (Springer, Berlin, 2008), p. 1

    Book  MATH  Google Scholar 

  13. A. Challinor, Astrophysics from Antarctica, vol. 288 (2013), p. 42

    Google Scholar 

  14. A. Linde, Phys. Rev. D 59, 023503 (1999)

    Article  ADS  Google Scholar 

  15. A. Linde, J. Cosmol. Astropart. Phys. 5, 002 (2003)

    Article  ADS  Google Scholar 

  16. S. Tsujikawa, Modified gravity models of dark energy, in Lectures on Cosmology. Lecture Notes in Physics, vol. 800 (Springer, Berlin, 2010), p. 99

    Google Scholar 

  17. J.-P. Uzan, Rev. Mod. Phys. 75, 403 (2003)

    Article  ADS  Google Scholar 

  18. G.F. Smoot, C.L. Bennett, A. Kogut et al., Astrophys. J. Lett. 396, L1 (1992)

    Article  ADS  Google Scholar 

  19. P. de Bernardis, P.A.R. Ade, J.J. Bock et al., Nature 404, 955 (2000)

    Article  ADS  Google Scholar 

  20. R. Stompor et al., Astrophys. J. Lett. 561, L7 (2001)

    Article  ADS  Google Scholar 

  21. A. Benoît et al., Astron. Astrophys. 399, L19 (2003)

    Article  ADS  Google Scholar 

  22. C. Dickinson et al., Mon. Not. R. Astron. Soc. 353, 732 (2004)

    Article  ADS  Google Scholar 

  23. J.L. Sievers et al., Astrophys. J. 591, 599 (2003)

    Article  ADS  Google Scholar 

  24. C.L. Kuo et al., Astrophys. J. 600, 32 (2004)

    Article  ADS  Google Scholar 

  25. C.L. Bennett, D. Larson, J.L. Weiland et al., Astrophys. J. Suppl. Ser. 208, 20 (2013)

    Article  ADS  Google Scholar 

  26. J.W. Fowler, V. Acquaviva, P.A.R. Ade et al., Astrophys. J. 722, 1148 (2010)

    Article  ADS  Google Scholar 

  27. K.T. Story, C.L. Reichardt, Z. Hou et al., Astrophys. J. 779, 86 (2013)

    Article  ADS  Google Scholar 

  28. Planck 2018 Results I (2018). arXiv: 1807.06205

    Google Scholar 

  29. C. Dickinson, in Draft Proceedings for the Conference Rencontres de Moriond 2016 on Cosmology (2016). arXiv: astro-ph/1606.03606

    Google Scholar 

  30. M. Zaldarriaga, U. Seljak, Phys. Rev. D 55, 1830 (1997)

    Article  ADS  Google Scholar 

  31. M. Kamionkowski, A. Kosowsky, A. Stebbins, Phys. Rev. D 55, 7368 (1997)

    Article  ADS  Google Scholar 

  32. W. Hu, M. White, New Astron. 2, 323 (1997)

    Article  ADS  Google Scholar 

  33. S. Das, B.D. Sherwin, P. Aguirre et al., Phys. Rev. Lett. 107, 021301 (2011)

    Article  ADS  Google Scholar 

  34. Planck 2018 Results VI (2018). arXiv: 1807.06209

    Google Scholar 

  35. Planck 2013 Results XIII, Astron. Astrophys. 594, A13 (2016)

    Google Scholar 

  36. A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Astrophys. J. 876, 85 (2019)

    Article  ADS  Google Scholar 

  37. BICEP2 Collaboration, Keck Array Collaboration, P.A.R. Ade et al., Phys. Rev. Lett. 121, 221301 (2018)

    Google Scholar 

  38. L. Anderson, E. Aubourg, S. Bailey et al., Mon. Not. R. Astron. Soc. 427, 3435 (2012)

    Article  ADS  Google Scholar 

  39. D.W. Hogg, Distance measures in cosmology (2000). arXiv:astro-ph/9905116

    Google Scholar 

  40. C. Alcock, B. Paczynski, Nature 281, 358 (1979)

    Article  ADS  Google Scholar 

  41. W.J. Percival, Lectures given at Post-Planck Cosmology, Ecole de Physique des Houches, and New Horizons for Observational Cosmology, International School of Physics Enrico Fermi, Varenna (2013). arXiv:astro-ph/1312.5490

    Google Scholar 

  42. J. Huchra, M. Davis, D. Latham, J. Tonry, Astrophys. J. Suppl. Ser. 52, 89 (1983)

    Article  ADS  Google Scholar 

  43. G. de Vaucouleurs, A. de Vaucouleurs, H.G. Corwin Jr. et al., Sky Telescope 82, 621 (1991)

    Google Scholar 

  44. S.A. Shectman, S.D. Landy, A. Oemler et al., Astrophys. J. 470, 172 (1996)

    Article  ADS  Google Scholar 

  45. M. Colless, B.A. Peterson, C. Jackson et al. (2003). arXiv:astro-ph/0306581

    Google Scholar 

  46. M.J. Drinkwater, R.J. Jurek, C. Blake et al., Mon. Not. R. Astron. Soc. 401, 1429 (2010)

    Article  ADS  Google Scholar 

  47. D.G. York, J. Adelman, J.E. Anderson Jr. et al., Astron. J. 120, 1579 (2000)

    Article  ADS  Google Scholar 

  48. D.J. Eisenstein, D.H. Weinberg, E. Agol et al., Astron. J. 142, 72 (2011)

    Article  ADS  Google Scholar 

  49. S. Cole, W.J. Percival, J.A. Peacock et al., Mon. Not. R. Astron. Soc. 362, 505 (2005)

    Article  ADS  Google Scholar 

  50. D.J. Eisenstein, I. Zehavi, D.W. Hogg et al., Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  51. M. Ata, F. Baumgarten, J. Baumgarten et al., Mon. Not. R. Astron. Soc. 473, 4773 (2018)

    Article  ADS  Google Scholar 

  52. J.E. Bautista, N.G. Busca, J. Guy et al., Astron. Astrophys. 603, A12 (2017)

    Article  Google Scholar 

  53. S. Alam, M. Ata, S. Bailey et al., Mon. Not. R. Astron. Soc. 470, 2617 (2017)

    Article  ADS  Google Scholar 

  54. É. Aubourg, S. Bailey, J.E. Bautista et al., Phys. Rev. D 92, 123516 (2015)

    Article  ADS  Google Scholar 

  55. F. Marulli, A. Veropalumbo, M. Sereno et al., Astron. Astrophys. 620, A1 (2018)

    Article  Google Scholar 

  56. M. Bonamente, M.K. Joy, S.J. LaRoque et al., Astrophys. J. 647, 25 (2006)

    Article  ADS  Google Scholar 

  57. Planck 2015 Results XXII, Astron. Astrophys. 594, A22 (2016)

    Google Scholar 

  58. A. Vikhlinin, A.V. Kravtsov, R.A. Burenin et al., Astrophys. J. 692, 1060 (2009)

    Article  ADS  Google Scholar 

  59. Planck 2013 Results XX, Astron. Astrophys. 571, A20 (2013)

    Google Scholar 

  60. Planck 2015 Results XXIV, Astron. Astrophys. 594, A24 (2016)

    Google Scholar 

  61. A.G. Riess, W.H. Press, R.P. Kirshner, Astrophys. J. 473, 88 (1996)

    Article  ADS  Google Scholar 

  62. M.M. Phillips, Astrophys. J. Lett. 413, L105 (1993)

    Article  ADS  Google Scholar 

  63. A. Sandage, G.A. Tammann, Astrophys. J. 256, 339 (1982)

    Article  ADS  Google Scholar 

  64. W.L. Freedman, B.F. Madore, B.K. Gibson et al., Astrophys. J. 553, 47 (2001)

    Article  ADS  Google Scholar 

  65. W.L. Freedman, B.F. Madore, D. Hatt et al. (2019). arXiv: 1907.05922

    Google Scholar 

  66. E. Macaulay, R.C. Nichol, D. Bacon et al., Mon. Not. R. Astron. Soc. 486, 2184 (2018)

    Article  ADS  Google Scholar 

  67. A.G. Riess, A.V. Filippenko, P. Challis et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  68. S. Perlmutter, G. Aldering, G. Goldhaber et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  69. W.M. Wood-Vasey, G. Miknaitis, C.W. Stubbs et al., Astrophys. J. 666, 694 (2007)

    Article  ADS  Google Scholar 

  70. P. Astier, J. Guy, N. Regnault et al., Astron. Astrophys. 447, 31 (2006)

    Article  ADS  Google Scholar 

  71. M. Betoule, R. Kessler, J. Guy et al., Astron. Astrophys. 568, A22 (2014)

    Article  Google Scholar 

  72. M. Sako, B. Bassett, A.C. Becker et al., Publ. Astron. Soc. Pac. 130, 064002 (2018)

    Article  ADS  Google Scholar 

  73. A.G. Riess, L.-G. Strolger, S. Casertano et al., Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  74. D.M. Scolnic, D.O. Jones, A. Rest et al., Astrophys. J. 859, 101 (2018)

    Article  ADS  Google Scholar 

  75. K.C. Wong, S.H. Suyu, G.C.-F. Chen et al. (2019). arXiv: 1907.04869

    Google Scholar 

  76. V. Poulin, T.L. Smith, T. Karwal, M. Kamionkowski, Phys. Rev. Lett. 122, 221301 (2019)

    Article  ADS  Google Scholar 

  77. C.D. Kreisch, F.-Y. Cyr-Racine, O. Doré (2019). arXiv: 1902.00534

    Google Scholar 

  78. L. Verde, T. Treu, A.G. Riess (2019). arXiv: 1907.10625

    Google Scholar 

  79. M. Hasselfield, M. Hilton, T.A. Marriage et al., J. Cosmol. Astropart. Phys. 7, 008 (2013)

    Article  ADS  Google Scholar 

  80. S. Bocquet, A. Saro, J.J. Mohr et al., Astrophys. J. 799, 214 (2015)

    Article  ADS  Google Scholar 

  81. M. Remazeilles, B. Bolliet, A. Rotti, J. Chluba, Mon. Not. R. Astron. Soc. 483, 3459 (2019)

    Article  ADS  Google Scholar 

  82. G.E. Addison, Y. Huang, D.J. Watts et al., Astrophys. J. 818, 132 (2016)

    Article  ADS  Google Scholar 

  83. Planck Intermediate Results LI, N. Aghanim, Y. Akrami et al., Astron. Astrophys. 607, A95 (2017)

    Google Scholar 

  84. C.L. Bennett, R.S. Hill, G. Hinshaw et al., Astrophys. J. Suppl. Ser. 192, 17 (2011)

    Article  ADS  Google Scholar 

  85. Planck 2013 Results XV, Astron. Astrophys. 571, A15 (2014)

    Google Scholar 

  86. P. Vielva, E. Martínez-González, R.B. Barreiro, J.L. Sanz, L. Cayón, Astrophys. J. 609, 22 (2004)

    Article  ADS  Google Scholar 

  87. Planck 2013 Results XXIII, Astron. Astrophys. 571, A23 (2014)

    Google Scholar 

  88. D.J. Schwarz, C.J. Copi, D. Huterer, G.D. Starkman, Classical Quantum Gravity 33, 184001 (2016)

    Article  ADS  Google Scholar 

  89. D. Scott (2018). arXiv: 1804.01318

    Google Scholar 

  90. Planck 2013 Results XXII, Astron. Astrophys. 571, A22 (2014)

    Google Scholar 

Download references

Acknowledgements

Most of this work was written during a 5-week visit of the author to the University of Cambridge, in summer 2019. The author thanks the hospitality of the Cavendish Astrophysics group during this visit. The author also thanks Francisco-Shu Kitaura for reading parts of the text, and the referee for a careful reading of the text and useful comments. Some of the figures presented here have been taken from the “Planck Image Gallery” (ESA and Planck Collaboration).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Tanausú Génova-Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Génova-Santos, R.T. (2020). The Establishment of the Standard Cosmological Model Through Observations. In: Kabáth, P., Jones, D., Skarka, M. (eds) Reviews in Frontiers of Modern Astrophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-38509-5_11

Download citation

Publish with us

Policies and ethics