Skip to main content

Biofilms Forming Microbes: Diversity and Potential Application in Plant–Microbe Interaction and Plant Growth

  • Chapter
  • First Online:
Plant Microbiomes for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 25))

Abstract

Global climatic change and increasing worldwide population pose challenges for crop production. The promising sustainable solution is the integration of beneficial plant–microbes integration with microbiome to improve agriculture production. Microbial biofilms have a significant role in agriculture because they increase soil fertility and promote plant growth. Bacterial quorum sensing (QS) regulated process is biofilm formation. The plant growth promoting bacteria (PGPB) or Rhizobacteria (PGPR) has the ability to increase the crop yield. PGPR-based formulations have been commercialized to enhance agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotech 7:196–208

    Article  CAS  Google Scholar 

  • Alori ET, Babalola OO (2018) Microbial inoculants for improve crop quality and human health. Front Microbiol 9:2213

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Ali A, Deravel J, Krier F, Béchet M, Ongena M, Jacques P (2018) Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environ Sci Poll Res 25:29910–29920

    Article  CAS  Google Scholar 

  • Andreozzi A, Prieto P, Mercado-Blanco J, Monaco S, Zampieri E, Romano S, Valè G, Defez R, Bianco C (2019) Efficient colonization of the endophytes Herbaspirillum huttiense RCA24 and enterobacter cloacae RCA25 influences the physiological parameters of Oryza sativa L. cv. Baldo rice. Environ Microbiol. https://doi.org/10.1111/1462-2920.14688

    Article  CAS  Google Scholar 

  • Ansari FA, Jafri H, Ahmad I, Abulreesh HH (2017) Factors Affecting Biofilm Formation in in vitro and in the Rhizosphere. In: Ahmad I, Husain FM (eds) Biofilms in plant and soil health. Wiley, Hoboken, USA, p 275

    Chapter  Google Scholar 

  • Barman S, Das S, Bhattacharya SS (2019) The prospects of bio-fertilizer technology for productive and sustainable agricultural growth. In: Singh JS, Singh DP (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier Radarweg, Amsterdam, the Netherlands, pp 233–253

    Chapter  Google Scholar 

  • Besset-Manzoni Y, Rieusset L, Joly P, Comte G, Prigent-Combaret C (2018) Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ Sci Poll Res 25:29953–29970

    Article  Google Scholar 

  • Beyenal H, Lewandowski Z (2002) Internal and external mass transfer in biofilms grown at various flow velocities. Biotech Progress 18:55–61

    Article  CAS  Google Scholar 

  • Bogino PC, Oliva MD, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calderon CE, Tienda S, Heredia Z, Diez EM, Cárcamo-Oyarce G, Eberl L, Cazorla FM (2019) The compound 2-hexyl, 5-propyl resorcinol has a key role in biofilm formation by the biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606. Front Microbiol 10:396

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi O, Kang DW, Cho SK, Lee Y, Kang B, Bae J, Kim S, Lee JH, Lee SE, Kim J (2018) Anti-quorum sensing and anti-biofilm formation activities of plant extracts from South Korea. Asian Pacific J Trop Biomed 8:411

    Article  Google Scholar 

  • Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotech 86:1267–1279

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Acunto B, Frunzo L, Mattei MR (2017) Continuum approach to mathematical modelling of multispecies biofilms. Ricerche mat 66:153–169

    Article  Google Scholar 

  • D’Acunto B, Frunzo L, Klapper I, Mattei MR, Stoodley P (2019) Mathematical modeling of dispersal phenomenon in biofilms. Math Biosci 307:70–87

    Article  PubMed  Google Scholar 

  • De Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849

    Article  PubMed  PubMed Central  Google Scholar 

  • Eberl HJ, Parker DF, Van Loosdrecht M (2001) A new deterministic spatio-temporal continuum model for biofilm development. Comput Math Methods Med 3:161–175

    Google Scholar 

  • Emerenini BO, Hense BA, Kuttler C, Eberl HJ (2015) A mathematical model of quorum sensing induced biofilm detachment. PLoS ONE 10:e0132385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filgueiras L, Silva R, Almeida I, Vidal M, Baldani JI, Meneses CH (2019) Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa L. Plant Soil 1–7

    Google Scholar 

  • Fysun O, Kern H, Wilke B, Langowski HC (2019) Evaluation of factors influencing dairy biofilm formation in filling hoses of food-processing equipment. Food Bioprod Process 113:39–48

    Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica

    Google Scholar 

  • Hadla M, Halabi MA (2018) Effect of quorum sensing. In: Chormey DS, Bakırdere S, Turan NB, Engin GÖ (eds) Comprehensive analytical chemistry. Elsevier, Radarweg, Amsterdam, the Netherlands 81:95–116

    Google Scholar 

  • Jijón-Moreno S, Baca BE, Castro-Fernández DC, Ramírez-Mata A (2019) TyrR is involved in the transcriptional regulation of biofilm formation and D-alanine catabolism in Azospirillum brasilense Sp7. PLoS One 14:e0211904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanchan A, Simranjit K, Ranjan K, Prasanna R, Ramakrishnan B, Singh MC, Hasan M, Shivay YS (2019) Microbial biofilm inoculants benefit growth and yield of chrysanthemum varieties under protected cultivation through enhanced nutrient availability. Plant Biosyst Int J Deal Aspect Plant Biol 153:306–316

    Google Scholar 

  • Kour D, Rana KL, Kumar A, Rastegari AA, Yadav N, Yadav AN, Gupta VK (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh BN, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, USA, pp 321–372

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, Sayyed RZ, Hesham AE-L, Dhaliwal HS, Saxena AK (2019b) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: volume 1: rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2019c) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kumar A, Patel JS, Meena VS, Srivastava R (2019a) Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocat Agricul Biotechnol 20:101271

    Article  Google Scholar 

  • Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A, Tomar RS (2019b) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308. https://doi.org/10.2478/s11756-019-00190-6

    Article  CAS  Google Scholar 

  • Kumawat KC, Sharma P, Sirari A, Singh I, Gill BS, Singh U, Saharan K (2019) Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. World J Microbiol Biotech 35:47

    Google Scholar 

  • Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169(1):2–17

    Article  PubMed  Google Scholar 

  • Liu C, Mou L, Yi J, Wang J, Liu A, Yu J (2019) The Eno Gene of Burkholderia cenocepacia Strain 71-2 is involved in Phosphate Solubilization. Current Microbial 76:495–502

    Article  CAS  Google Scholar 

  • Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, Ramkumar G, Saranya C, Shanmuganathan R (2018) Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control. Biocat Agricul Biotechnol 17:119–128

    Article  Google Scholar 

  • Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, García-Martín ML, Lamon G, Haberstein B, Cazorla FM, de Vicente A (2019) The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat Commun 10:1919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Pandin C, Le Coq D, Canette A, Aymerich S, Briandet R (2017) Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microbial Biotech 10:719–734

    Article  Google Scholar 

  • Pedraza RO (2015) Siderophores production by Azospirillum: biological importance, assessing methods and biocontrol activity. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum. Springer, Switzerland, pp 251–262

    Google Scholar 

  • Pérez-Velázquez J, Gölgeli M, García-Contreras R (2016) Mathematical modelling of bacterial quorum sensing: a review. Bull Math Biol 78:1585–1639

    Article  PubMed  CAS  Google Scholar 

  • Pliego C, Kamilova F, Lugtenberg B (2011) Plant growth-promoting bacteria: fundamentals and exploitation. In: Maheshwari D (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, Heidelberg, pp 295–343

    Chapter  Google Scholar 

  • Prabhu N, Borkar S, Garg S (2019) Phosphate solubilization by microorganisms: overview, mechanisms, applications and advances. In: Meena SN (ed) Advances in biological science research, a practical approach. Academic Press, Elsevier, London, pp 161–176

    Chapter  Google Scholar 

  • Primo ED, Cossovich S, Giordano W (2019) A simple method to evaluate biofilm formation in exopolysaccharide-producing strains of Sinorhizobium meliloti. J Biol Edu 7:1–8

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotech 28:142–149

    Article  CAS  Google Scholar 

  • Ramakrishna W, Yadav R, Li K (2019) Plant growth promoting bacteria in agriculture: two sides of a coin. Appl Soil Ecol 138:10–18

    Article  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Roy V, Adams BL, Bentley WE (2011) Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzyme Microbial Tech 49:113–123

    Article  CAS  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Khan MS, Kumar M (2019) Kitazin-pea interaction: understanding the fungicide induced nodule alteration, cytotoxicity, oxidative damage and toxicity alleviation by Rhizobium leguminosarum. RSC Adv 9:16929–16947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Singh PP, Gupta A, Singh AK, Keshri J (2019) Tolerance of heavy metal toxicity using PGPR strains of Pseudomonas species. PGPR amelioration in sustainable agriculture, food security and environmental management. Woodhead Publishing, Elsevier, Duxford, pp 239–252

    Chapter  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, India, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Tabassum B, Khan A, Tariq M, Ramzan M, Khan MS, Shahid N, Aaliya K (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117

    Article  Google Scholar 

  • Taktek S, St-Arnaud M, Piché Y, Fortin JA, Antoun H (2017) Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza 27:13–22

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 9(8):49

    Google Scholar 

  • Tiwari S, Prasad V, Lata C (2019) Bacillus: plant growth promoting bacteria for sustainable agriculture and environment. New and future developments in microbial biotechnology and bioengineering—microbial biotechnology in agro-environmental sustainability. Elsevier, Radarweg, Amsterdam, the Netherlands, pp 43–55

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Velmourougane K, Prasanna R, Saxena AK (2017) Agriculturally important microbial biofilms: present status and future prospects. J Basic Microbiol 57:548–573

    Article  PubMed  Google Scholar 

  • Velmourougane K, Prasanna R, Chawla G, Nain L, Kumar A, Saxena AK (2019a) Trichoderma-Azotobacter biofilm inoculation improves soil nutrient availability and plant growth in wheat and cotton. J Basic Microbiol. https://doi.org/10.1002/jobm.201900009

    Article  PubMed  Google Scholar 

  • Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK (2019b) Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiol Res 227:126292

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017a) Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution: volume 1: microbes for sustainable crop production. Springer, Singapore, pp 125–149. https://doi.org/10.1007/978-981-10-6241-4_7

    Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives: volume 2: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Google Scholar 

  • Wang D, Xu A, Elmerich C, Ma LZ (2017) Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions. ISME J 11(7):1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehead KA, Verran J (2015) Formation, architecture and functionality of microbial biofilms in the food industry. Curr Opin Food Sci 2:84–91

    Article  Google Scholar 

  • Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4

    Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN (2019) Microbiomes of wheat (Triticum aestivum L.) endowed with multifunctional plant growth promoting attributes. EC Microbiol 15:1–6

    CAS  Google Scholar 

  • Yadav N, Yadav AN (2019) Actinobacteria for sustainable agriculture. J Appl Biotechnol Bioeng 6:38–41

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Kaushik R, Dey R, Pal KK, Saxena AK (2015c) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13

    Article  Google Scholar 

  • Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena AK, Dhaliwal HS (2017b) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8. https://doi.org/10.19080/IJESNR.2017.03.555601

    Article  Google Scholar 

  • Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017c) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16

    Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R, Dey R, Pal KK, Kaushik R, Saxena AK (2019a) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  • Yadav AN, Yadav N, Sachan SG, Saxena AK (2019b) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7:99–108

    Article  Google Scholar 

  • Zhang F, Wang P, Zou YN, Wu QS, Kuča K (2019) Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Arch Agron Soil Sci 65(9):1316–1330

    Article  CAS  Google Scholar 

  • Zhu J, Li M, Whelan M (2018) Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ 612:522–537

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Rice SA, Barraud N (2019) Nitric oxide and iron signalling cues have opposing effects on biofilm development in pseudomonas aeruginosa. Appl Environ Microbiol 85(3):e02175–18

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Singh, J. (2020). Biofilms Forming Microbes: Diversity and Potential Application in Plant–Microbe Interaction and Plant Growth. In: Yadav, A., Singh, J., Rastegari, A., Yadav, N. (eds) Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-38453-1_6

Download citation

Publish with us

Policies and ethics