Skip to main content

Thomas Decomposition and Nonlinear Control Systems

Part of the Advances in Delays and Dynamics book series (ADVSDD,volume 9)

Abstract

This paper applies the Thomas decomposition technique to nonlinear control systems, in particular to the study of the dependence of the system behavior on parameters. Thomas’ algorithm is a symbolic method which splits a given system of nonlinear partial differential equations into a finite family of so-called simple systems which are formally integrable and define a partition of the solution set of the original differential system. Different simple systems of a Thomas decomposition describe different structural behavior of the control system in general. The paper gives an introduction to the Thomas decomposition method and shows how notions such as invertibility, observability and flat outputs can be studied. A Maple implementation of Thomas’ algorithm is used to illustrate the techniques on explicit examples.

Keywords

  • Thomas decomposition
  • Differential elimination
  • Nonlinear control systems
  • Flatness
  • Observability
  • Invertibility
  • Parameters in nonlinear control system

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-38356-5_4
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-38356-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

References

  1. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comput. 28(1–2), 105–124 (1999)

    MathSciNet  CrossRef  Google Scholar 

  2. Avanessoff, D., Pomet, J.-B.: Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states. ESAIM Control Optim. Calc. Var. 13(2), 237–264 (2007)

    MathSciNet  CrossRef  Google Scholar 

  3. Bächler, T.: Counting solutions of algebraic systems via triangular decomposition. PhD thesis, RWTH Aachen University, Germany (2014). http://publications.rwth-aachen.de/record/444946?ln=en

  4. Bächler, T., Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symb. Comput. 47(10), 1233–1266 (2012)

    MathSciNet  CrossRef  Google Scholar 

  5. Bächler, T., Lange-Hegermann, M.: Algebraic Thomas and Differential Thomas: Thomas decomposition of algebraic and differential systems. http://wwwb.math.rwth-aachen.de/thomasdecomposition

  6. Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE package “Janet”: I. Polynomial systems. II. Linear partial differential equations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing, Passau, Germany, pp. 31–40 resp. pp. 41–54 (2003). http://wwwb.math.rwth-aachen.de/Janet

  7. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput. 20(1), 73–121 (2009)

    MathSciNet  CrossRef  Google Scholar 

  8. Cohn, R.M.: Difference Algebra. Wiley-Interscience, New York (1965)

    MATH  Google Scholar 

  9. Conte, G., Moog, C.H., Perdon, A.M.: Nonlinear Control Systems. Lecture Notes in Control and Information Sciences, vol. 242. Springer, London (1999)

    Google Scholar 

  10. Diop, S.: Differential-algebraic decision methods and some applications to system theory. Theor. Comput. Sci. 98(1), 137–161 (1992)

    MathSciNet  CrossRef  Google Scholar 

  11. Diop, S.: Elimination in control theory. Math. Control. Signals Syst. 4(1), 17–32 (1991)

    MathSciNet  CrossRef  Google Scholar 

  12. Eisenbud, D.: Commutative Algebra – with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

    CrossRef  Google Scholar 

  13. Fliess, M., Glad, S.T.: An algebraic approach to linear and nonlinear control. In: Trentelman, H.L., Willems, J.C. (eds.) Essays on Control: Perspectives in the Theory and its Applications, pp. 223–267. Birkhäuser, Boston (1993)

    CrossRef  Google Scholar 

  14. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of non-linear systems: introductory theory and examples. Int. J. Control. 61(6), 1327–1361 (1995)

    MathSciNet  CrossRef  Google Scholar 

  15. Gao, X.-S., Luo, Y., Yuan, C.M.: A characteristic set method for ordinary difference polynomial systems. J. Symb. Comput. 44(3), 242–260 (2009)

    MathSciNet  CrossRef  Google Scholar 

  16. Gao, X.-S., van der Hoeven, J., Yuan, C.M., Zhang, G.L.: Characteristic set method for differential-difference polynomial systems. J. Symb. Comput. 44(9), 1137–1163 (2009)

    MathSciNet  CrossRef  Google Scholar 

  17. Gerdt, V.P.: On decomposition of algebraic PDE systems into simple subsystems. Acta Appl. Math. 101(1–3), 39–51 (2008)

    MathSciNet  CrossRef  Google Scholar 

  18. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simul. 45, 519–541 (1998)

    MathSciNet  CrossRef  Google Scholar 

  19. Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: The Maple package TDDS for computing Thomas decompositions of systems of nonlinear PDEs. Comput. Phys. Commun. 234, 202–215 (2019)

    MathSciNet  CrossRef  Google Scholar 

  20. Glad., S.T.: Differential algebraic modelling of nonlinear systems. In: Kaashoek, M.A., van Schuppen, J.H., Ran, A.C.M. (eds.) Realization and Modelling in System Theory, pp. 97–105. Birkhäuser, Boston (1989)

    CrossRef  Google Scholar 

  21. Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms. I. Polynomial systems. II. Differential systems. In: Winkler, F., Langer, U. (eds.) Symbolic and Numerical Scientific Computation, Hagenberg (2001), pp. 1–39 resp. 40–87. Lecture Notes in Computer Science, vol. 2630. Springer, Berlin (2003)

    Google Scholar 

  22. Ince, E.L.: Ordinary Differential Equations. Dover Publications, New York (1956)

    Google Scholar 

  23. Janet, M.: Leçons sur les systèmes d’équations aux dérivées partielles. Cahiers Scientifiques IV. Gauthiers-Villars, Paris (1929)

    MATH  Google Scholar 

  24. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Pure and Applied Mathematics, vol. 54. Academic, New York (1973)

    Google Scholar 

  25. Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley-Interscience, New York (1972)

    MATH  Google Scholar 

  26. Lange-Hegermann, M.: Counting solutions of differential equations. PhD thesis, RWTH Aachen University, Germany (2014). http://publications.rwth-aachen.de/record/229056?ln=en

  27. Lange-Hegermann, M.: The differential counting polynomial. Found. Comput. Math. 18(2), 291–308 (2018)

    MathSciNet  CrossRef  Google Scholar 

  28. Lange-Hegermann, M., Robertz, D.: Thomas decompositions of parametric nonlinear control systems. In: Proceedings of the 5th Symposium on System Structure and Control, Grenoble, France, pp. 291–296 (2013)

    Google Scholar 

  29. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in MAPLE. SIGSAM Bull. 39, 96–97 (2005). September

    CrossRef  Google Scholar 

  30. Levandovskyy, V., Zerz, E.: Obstructions to genericity in study of parametric problems in control theory. In: Park, H., Regensburger, G. (eds.) Gröbner Bases in Control Theory and Signal Processing. Radon Series on Computational and Applied Mathematics, vol. 3, pp. 127–149. Walter de Gruyter, Berlin (2007)

    Google Scholar 

  31. Lévine, J.: On necessary and sufficient conditions for differential flatness. Appl. Algebra Eng. Commun. Comput. 22(1), 47–90 (2011)

    MathSciNet  CrossRef  Google Scholar 

  32. Mishra, B.: Algorithmic Algebra. Texts and Monographs in Computer Science. Springer, New York (1993)

    CrossRef  Google Scholar 

  33. Nijmeijer, H., van der Schaft, A.: Nonlinear Dynamical Control Systems. Springer, New York (1990)

    CrossRef  Google Scholar 

  34. Picó-Marco, E.: Differential algebra for control systems design: constructive computation of canonical forms. IEEE Control Syst. Mag. 33(2), 52–62 (2013)

    MathSciNet  CrossRef  Google Scholar 

  35. Plesken, W.: Counting solutions of polynomial systems via iterated fibrations. Arch. Math. (Basel) 92(1), 44–56 (2009)

    MathSciNet  CrossRef  Google Scholar 

  36. Pommaret, J.-F.: Partial Differential Equations and Group Theory. Mathematics and Its Applications, vol. 293. Kluwer Academic Publishers Group, Dordrecht (1994)

    CrossRef  Google Scholar 

  37. Pommaret, J.-F.: Partial Differential Control Theory. Mathematics and Its Applications, vol. 530. Kluwer Academic Publishers Group, Dordrecht (2001)

    CrossRef  Google Scholar 

  38. Pommaret, J.-F., Quadrat, A.: Formal obstructions to the controllability of partial differential control systems. In: Proceedings of IMACS, Berlin, Germany, vol. 5, pp. 209–214 (1997)

    Google Scholar 

  39. Riquier, C.: Les systèmes d’équations aux dérivées partielles. Gauthiers-Villars, Paris (1910)

    MATH  Google Scholar 

  40. Ritt, J.F.: Differential Algebra. American Mathematical Society Colloquium Publications, vol. XXXIII. American Mathematical Society, New York (1950)

    Google Scholar 

  41. Robertz, D.: Formal Algorithmic Elimination for PDEs. Lecture Notes in Mathematics, vol. 2121. Springer, Cham (2014)

    CrossRef  Google Scholar 

  42. Robertz, D.: Recent progress in an algebraic analysis approach to linear systems. Multidimens. Syst. Signal Process. 26(2), 349–388 (2015)

    MathSciNet  CrossRef  Google Scholar 

  43. Seidenberg, A.: An elimination theory for differential algebra. Univ. California Publ. Math. (N.S.) 3, 31–65 (1956)

    Google Scholar 

  44. Thomas, J. M.: Differential Systems. American Mathematical Society Colloquium Publications, vol. XXI. American Mathematical Society, New York (1937)

    Google Scholar 

  45. Wang, D.: Decomposing polynomial systems into simple systems. J. Symb. Comput. 25(3), 295–314 (1998)

    MathSciNet  CrossRef  Google Scholar 

  46. Wang, D.: Elimination Methods. Texts and Monographs in Symbolic Computation. Springer, Vienna (2001)

    CrossRef  Google Scholar 

  47. Wu, W.T.: Mathematics Mechanization. Mathematics and Its Applications, vol. 489. Kluwer Academic Publishers Group, Dordrecht; Science Press, Beijing (2000)

    Google Scholar 

Download references

Acknowledgements

The first author was partially supported by Schwerpunkt SPP 1489 of the Deutsche Forschungsgemeinschaft. The authors would like to thank an anonymous referee for several useful remarks. They would also like to thank S. L. Rueda for pointing out reference [34].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Robertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lange-Hegermann, M., Robertz, D. (2020). Thomas Decomposition and Nonlinear Control Systems. In: Quadrat, A., Zerz, E. (eds) Algebraic and Symbolic Computation Methods in Dynamical Systems. Advances in Delays and Dynamics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-38356-5_4

Download citation