Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comput. 28(1–2), 105–124 (1999)
MathSciNet
CrossRef
Google Scholar
Avanessoff, D., Pomet, J.-B.: Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states. ESAIM Control Optim. Calc. Var. 13(2), 237–264 (2007)
MathSciNet
CrossRef
Google Scholar
Bächler, T.: Counting solutions of algebraic systems via triangular decomposition. PhD thesis, RWTH Aachen University, Germany (2014). http://publications.rwth-aachen.de/record/444946?ln=en
Bächler, T., Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symb. Comput. 47(10), 1233–1266 (2012)
MathSciNet
CrossRef
Google Scholar
Bächler, T., Lange-Hegermann, M.: Algebraic Thomas and Differential Thomas: Thomas decomposition of algebraic and differential systems. http://wwwb.math.rwth-aachen.de/thomasdecomposition
Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE package “Janet”: I. Polynomial systems. II. Linear partial differential equations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing, Passau, Germany, pp. 31–40 resp. pp. 41–54 (2003). http://wwwb.math.rwth-aachen.de/Janet
Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput. 20(1), 73–121 (2009)
MathSciNet
CrossRef
Google Scholar
Cohn, R.M.: Difference Algebra. Wiley-Interscience, New York (1965)
MATH
Google Scholar
Conte, G., Moog, C.H., Perdon, A.M.: Nonlinear Control Systems. Lecture Notes in Control and Information Sciences, vol. 242. Springer, London (1999)
Google Scholar
Diop, S.: Differential-algebraic decision methods and some applications to system theory. Theor. Comput. Sci. 98(1), 137–161 (1992)
MathSciNet
CrossRef
Google Scholar
Diop, S.: Elimination in control theory. Math. Control. Signals Syst. 4(1), 17–32 (1991)
MathSciNet
CrossRef
Google Scholar
Eisenbud, D.: Commutative Algebra – with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)
CrossRef
Google Scholar
Fliess, M., Glad, S.T.: An algebraic approach to linear and nonlinear control. In: Trentelman, H.L., Willems, J.C. (eds.) Essays on Control: Perspectives in the Theory and its Applications, pp. 223–267. Birkhäuser, Boston (1993)
CrossRef
Google Scholar
Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of non-linear systems: introductory theory and examples. Int. J. Control. 61(6), 1327–1361 (1995)
MathSciNet
CrossRef
Google Scholar
Gao, X.-S., Luo, Y., Yuan, C.M.: A characteristic set method for ordinary difference polynomial systems. J. Symb. Comput. 44(3), 242–260 (2009)
MathSciNet
CrossRef
Google Scholar
Gao, X.-S., van der Hoeven, J., Yuan, C.M., Zhang, G.L.: Characteristic set method for differential-difference polynomial systems. J. Symb. Comput. 44(9), 1137–1163 (2009)
MathSciNet
CrossRef
Google Scholar
Gerdt, V.P.: On decomposition of algebraic PDE systems into simple subsystems. Acta Appl. Math. 101(1–3), 39–51 (2008)
MathSciNet
CrossRef
Google Scholar
Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simul. 45, 519–541 (1998)
MathSciNet
CrossRef
Google Scholar
Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: The Maple package TDDS for computing Thomas decompositions of systems of nonlinear PDEs. Comput. Phys. Commun. 234, 202–215 (2019)
MathSciNet
CrossRef
Google Scholar
Glad., S.T.: Differential algebraic modelling of nonlinear systems. In: Kaashoek, M.A., van Schuppen, J.H., Ran, A.C.M. (eds.) Realization and Modelling in System Theory, pp. 97–105. Birkhäuser, Boston (1989)
CrossRef
Google Scholar
Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms. I. Polynomial systems. II. Differential systems. In: Winkler, F., Langer, U. (eds.) Symbolic and Numerical Scientific Computation, Hagenberg (2001), pp. 1–39 resp. 40–87. Lecture Notes in Computer Science, vol. 2630. Springer, Berlin (2003)
Google Scholar
Ince, E.L.: Ordinary Differential Equations. Dover Publications, New York (1956)
Google Scholar
Janet, M.: Leçons sur les systèmes d’équations aux dérivées partielles. Cahiers Scientifiques IV. Gauthiers-Villars, Paris (1929)
MATH
Google Scholar
Kolchin, E.R.: Differential Algebra and Algebraic Groups. Pure and Applied Mathematics, vol. 54. Academic, New York (1973)
Google Scholar
Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley-Interscience, New York (1972)
MATH
Google Scholar
Lange-Hegermann, M.: Counting solutions of differential equations. PhD thesis, RWTH Aachen University, Germany (2014). http://publications.rwth-aachen.de/record/229056?ln=en
Lange-Hegermann, M.: The differential counting polynomial. Found. Comput. Math. 18(2), 291–308 (2018)
MathSciNet
CrossRef
Google Scholar
Lange-Hegermann, M., Robertz, D.: Thomas decompositions of parametric nonlinear control systems. In: Proceedings of the 5th Symposium on System Structure and Control, Grenoble, France, pp. 291–296 (2013)
Google Scholar
Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in MAPLE. SIGSAM Bull. 39, 96–97 (2005). September
CrossRef
Google Scholar
Levandovskyy, V., Zerz, E.: Obstructions to genericity in study of parametric problems in control theory. In: Park, H., Regensburger, G. (eds.) Gröbner Bases in Control Theory and Signal Processing. Radon Series on Computational and Applied Mathematics, vol. 3, pp. 127–149. Walter de Gruyter, Berlin (2007)
Google Scholar
Lévine, J.: On necessary and sufficient conditions for differential flatness. Appl. Algebra Eng. Commun. Comput. 22(1), 47–90 (2011)
MathSciNet
CrossRef
Google Scholar
Mishra, B.: Algorithmic Algebra. Texts and Monographs in Computer Science. Springer, New York (1993)
CrossRef
Google Scholar
Nijmeijer, H., van der Schaft, A.: Nonlinear Dynamical Control Systems. Springer, New York (1990)
CrossRef
Google Scholar
Picó-Marco, E.: Differential algebra for control systems design: constructive computation of canonical forms. IEEE Control Syst. Mag. 33(2), 52–62 (2013)
MathSciNet
CrossRef
Google Scholar
Plesken, W.: Counting solutions of polynomial systems via iterated fibrations. Arch. Math. (Basel) 92(1), 44–56 (2009)
MathSciNet
CrossRef
Google Scholar
Pommaret, J.-F.: Partial Differential Equations and Group Theory. Mathematics and Its Applications, vol. 293. Kluwer Academic Publishers Group, Dordrecht (1994)
CrossRef
Google Scholar
Pommaret, J.-F.: Partial Differential Control Theory. Mathematics and Its Applications, vol. 530. Kluwer Academic Publishers Group, Dordrecht (2001)
CrossRef
Google Scholar
Pommaret, J.-F., Quadrat, A.: Formal obstructions to the controllability of partial differential control systems. In: Proceedings of IMACS, Berlin, Germany, vol. 5, pp. 209–214 (1997)
Google Scholar
Riquier, C.: Les systèmes d’équations aux dérivées partielles. Gauthiers-Villars, Paris (1910)
MATH
Google Scholar
Ritt, J.F.: Differential Algebra. American Mathematical Society Colloquium Publications, vol. XXXIII. American Mathematical Society, New York (1950)
Google Scholar
Robertz, D.: Formal Algorithmic Elimination for PDEs. Lecture Notes in Mathematics, vol. 2121. Springer, Cham (2014)
CrossRef
Google Scholar
Robertz, D.: Recent progress in an algebraic analysis approach to linear systems. Multidimens. Syst. Signal Process. 26(2), 349–388 (2015)
MathSciNet
CrossRef
Google Scholar
Seidenberg, A.: An elimination theory for differential algebra. Univ. California Publ. Math. (N.S.) 3, 31–65 (1956)
Google Scholar
Thomas, J. M.: Differential Systems. American Mathematical Society Colloquium Publications, vol. XXI. American Mathematical Society, New York (1937)
Google Scholar
Wang, D.: Decomposing polynomial systems into simple systems. J. Symb. Comput. 25(3), 295–314 (1998)
MathSciNet
CrossRef
Google Scholar
Wang, D.: Elimination Methods. Texts and Monographs in Symbolic Computation. Springer, Vienna (2001)
CrossRef
Google Scholar
Wu, W.T.: Mathematics Mechanization. Mathematics and Its Applications, vol. 489. Kluwer Academic Publishers Group, Dordrecht; Science Press, Beijing (2000)
Google Scholar