Skip to main content

Effective Algebraic Analysis Approach to Linear Systems over Ore Algebras

  • 305 Accesses

Part of the Advances in Delays and Dynamics book series (ADVSDD,volume 9)

Abstract

The purpose of this chapter is to present a survey on the effective algebraic analysis approach to linear systems theory with applications to control theory and mathematical physics. In particular, we show how the combination of effective methods of computer algebra—based on Gröbner basis techniques over a class of noncommutative polynomial rings of functional operators called Ore algebras—and constructive aspects of module theory and homological algebra enables the characterization of structural properties of linear functional systems. Algorithms are given and a dedicated implementation, called OreAlgebraicAnalysis, based on the Mathematica package HolonomicFunctions, is demonstrated.

Keywords

  • Linear systems theory
  • Control theory
  • Algebraic analysis
  • Computer algebra
  • Implementation

Supported by the PHC Parrot CASCAC (29586NG) and by the Austrian Science Fund (FWF): W1214.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-38356-5_1
  • Chapter length: 50 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-38356-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Notes

  1. 1.

    This work was supported by the PHC PARROT 29586NG between France and Estonia.

  2. 2.

    http://algo.inria.fr/chyzak/Mgfun/Sessions/Ore_algebra.html.

References

  1. Becker, T., Kredel, H., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, London (1993)

    CrossRef  Google Scholar 

  2. Belikov, J., Kaparin, V., Kotta, Ü., Tõnso, M.: NLControl: a software project addressing non-linear control systems. http://www.nlcontrol.ioc.ee

  3. Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)

    MathSciNet  CrossRef  Google Scholar 

  4. Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theor. Comput. Sci. 157(1), 3–33 (1996)

    MathSciNet  CrossRef  Google Scholar 

  5. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University of Innsbruck (1965); English translation: J. Symb. Comput. 41(3–4), 475–511 (2006)

    Google Scholar 

  6. Califano, C., Li, S., Moog, C.: Controllability of driftless nonlinear time-delay systems. J. Symb. Comput. 62, 294–301 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Chakhar, A., Cluzeau, T., Quadrat, A.: An algebraic analysis approach to certain classes of nonlinear partial differential systems. In: Proceedings of nDS’11, Poitiers, France, 05–07 Sept 2011

    Google Scholar 

  8. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discret. Math. 217(1–3), 115–134 (2000)

    MathSciNet  CrossRef  Google Scholar 

  9. Chyzak, F., Quadrat, A., Robertz, D.: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebr. Eng., Commun. Comput. 16, 319–376 (2005)

    MathSciNet  CrossRef  Google Scholar 

  10. Chyzak, F., Quadrat, A., Robertz, D.: OreModules: A Symbolic Package for the Study of Multidimensional Linear Systems. Lecture Notes in Control and Information Sciences, vol. 352, pp. 233–264. Springer, Berlin (2007). https://who.rocq.inria.fr/Alban.Quadrat/OreModules/index.html

  11. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symb. Comput. 26, 187–227 (1998)

    MathSciNet  CrossRef  Google Scholar 

  12. Cluzeau, T., Quadrat, A.: Factoring and decomposing a class of linear functional systems. Linear Algebr. Its Appl. 428, 324–381 (2008)

    MathSciNet  CrossRef  Google Scholar 

  13. Cluzeau, T., Quadrat, A.: OreMorphisms: A Homological Algebraic Package for Factoring, Reducing and Decomposing Linear Functional Systems. Lecture Notes in Control and Information Sciences, vol. 388, pp. 179–194. Springer, Berlin (2009). https://who.rocq.inria.fr/Alban.Quadrat/OreMorphisms/index.html

    CrossRef  Google Scholar 

  14. Cluzeau, T., Quadrat, A.: Equivalences of linear functional systems. In this book

    Google Scholar 

  15. Cluzeau, T., Quadrat, A., Tõnso, M.: OreAlgebraicAnalysis: A Mathematica package for the algorithmic study of linear functional systems. OreAlgebraicAnalysis project (2015). https://who.rocq.inria.fr/Alban.Quadrat/OreAlgebraicAnalysis/index.html

  16. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. American Mathematical Society, Providence (2000)

    Google Scholar 

  17. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, New York (1992)

    CrossRef  Google Scholar 

  18. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185. Springer, Berlin (2005)

    Google Scholar 

  19. Eder, C., Faugère, J.-C.: A survey on signature-based Gröbner basis computations (2014). arXiv:1404.1774

  20. Fabiańska, A., Quadrat, A.: Applications of the Quillen-Suslin theorem to multidimensional systems theory. Gröbner Bases in Control Theory and Signal Processing. Radon Series on Computation and Applied Mathematics, vol. 3, pp. 23–106. de Gruyter Publisher, Berlin (2007). https://who.rocq.inria.fr/Alban.Quadrat/QuillenSuslin/index.html

  21. Fliess, M.: Some basic structural properties of generalized linear systems. Syst. Control Lett. 5, 391–396 (1990)

    MathSciNet  CrossRef  Google Scholar 

  22. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control 61, 1327–1361 (1995)

    CrossRef  Google Scholar 

  23. Fliess, M., Mounier, H.: Controllability and observability of linear delay systems: an algebraic approach. ESAIM: Control., Optim. Calc. Var. 3, 301–314 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Berlin (2008)

    MATH  Google Scholar 

  25. Hotta, R., Takeuchi, K., Tanisaki, T.: \(D\)-Modules, Perverse Sheaves, and Representation Theory. Progress in Mathematics, vol. 236. Birkhäuser, Basel (2008)

    Google Scholar 

  26. Kandri-Rody, A., Weispfenning, V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comput. 9(1), 1–26 (1990)

    CrossRef  Google Scholar 

  27. Kailath, T.: Linear Systems. Prentice-Hall, Upper Saddle River (1980)

    MATH  Google Scholar 

  28. Kashiwara, M.: Algebraic Study of Systems of Partial Differential Equations. Mémoires de la Société Mathématique de France, vol. 63 (1995); English translation (Kyoto 1970)

    CrossRef  Google Scholar 

  29. Koutschan, C.: Advanced applications of the holonomic systems approach. Ph.D. thesis, University of Linz, Austria (2009)

    Google Scholar 

  30. Koutschan, C.: HolonomicFunctions (user’s guide). RISC Report Series, Johannes Kepler University, 10 Jan 2010. http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/

  31. Kredel, H.: Solvable Polynomial Rings. Shaker (1993)

    Google Scholar 

  32. Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley, Hoboken (1972)

    MATH  Google Scholar 

  33. Janet, M.: Leçons sur les systèmes d’équations aux dérivées partielles. Gauthier-Villars (1929)

    Google Scholar 

  34. Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189. Springer, Berlin (1999)

    CrossRef  Google Scholar 

  35. Lange-Hegermann, M., Robertz, D.: Thomas Decomposition and Nonlinear Control Systems. In this volume

    Google Scholar 

  36. Levandovskyy, V., Schönemann, H.: Plural \(-\) A computer algebra system for non-commutative polynomial algebras. In: Proceedings of ISSAC’03, pp. 176–183. ACM Press (2003). https://www.singular.uni-kl.de/Manual/4-0-2/sing_469.htm

  37. Levandovskyy, V.: Non-commutative computer algebra for polynomial algebras: Gröbner bases, applications and implementation. Ph.D. thesis, University of Kaiserslautern (2005)

    Google Scholar 

  38. Levandovskyy, V.: Computing diagonal form and Jacobson normal form of a matrix using Gröbner bases. J. Symb. Comput. 46, 595–608 (2011)

    CrossRef  Google Scholar 

  39. Macaulay 2 project. http://www.math.uiuc.edu/Macaulay2/

  40. Malgrange, B.: Systèmes différentiels à coefficients constants. Séminaire Bourbaki 1962(63), 1–11 (1962)

    Google Scholar 

  41. Manitius, A.: Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulations. IEEE Trans. Autom. Control 29, 1058–1068 (1984)

    MathSciNet  CrossRef  Google Scholar 

  42. Marquez-Martinez, L.A.: A note on the accessibility for nonlinear time-delay systems. Comptes Rendus de l’Académie des Sciences, Paris, t. 329, série 1, pp. 545–550 (1999)

    Google Scholar 

  43. Oberst, U.: Multidimensional constant linear systems. Acta Applicandae Mathematicae 20, 1–175 (1990)

    MathSciNet  CrossRef  Google Scholar 

  44. Ore, Ø.: Theory of non-commutative polynomials. Ann. Math., Second. Ser. 34(3), 480–508 (1933)

    MathSciNet  CrossRef  Google Scholar 

  45. Pommaret, J.-F.: Partial Differential Control Theory. Kluwer, Netherlands (2001)

    CrossRef  Google Scholar 

  46. Pommaret, J.-F., Quadrat, A.: Algebraic analysis of linear multidimensional control systems. IMA J. Math. Control Inf. 16, 275–297 (1999)

    MathSciNet  CrossRef  Google Scholar 

  47. Quadrat, A.: An introduction to constructive algebraic analysis and its applications. Les cours du CIRM, Journées Nationales de Calcul Formel 1(2), 281–471 (2010)

    CrossRef  Google Scholar 

  48. Quadrat, A., Robertz, D.: Computation of bases of free modules over the Weyl algebras. J. Symb. Comput. 42, 1113–1141 (2007). https://who.rocq.inria.fr/Alban.Quadrat/OreModules/stafford.html

    MathSciNet  CrossRef  Google Scholar 

  49. Quadrat, A., Robertz, D.: A constructive study of the module structure of rings of partial differential operators. Acta Applicandæ Mathematicæ 133, 187–234 (2014)

    MathSciNet  CrossRef  Google Scholar 

  50. Quadrat, A., Ushirobira, R.: Algebraic analysis for the Ore extension ring of differential time-varying delay operators. In: Proceedings of MTNS 2016

    Google Scholar 

  51. Robertz, D.: Recent progress in an algebraic analysis approach to linear systems. Multidimens. Syst. Signal Process. 26, 349–388 (2015)

    MathSciNet  CrossRef  Google Scholar 

  52. Rotman, J.J.: An Introduction to Homological Algebra. Springer, Berlin (2009)

    Google Scholar 

  53. Takayama, N.: Kan: a system for computation in algebraic analysis. http://www.math.kobe-u.ac.jp/KAN/index.html

  54. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321–368 (1990)

    MathSciNet  CrossRef  Google Scholar 

  55. Zeilberger, D.: The method of creative telescoping. J. Symb. Comput. 11, 195–204 (1991)

    MathSciNet  CrossRef  Google Scholar 

  56. Zerz, E.: Topics in Multidimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences, vol. 256. Springer, Berlin (2000)

    Google Scholar 

  57. Zerz, E.: An algebraic analysis approach to linear time-varying systems. IMA J. Math. Control Inf. 23, 113–126 (2006)

    MathSciNet  CrossRef  Google Scholar 

  58. Zerz, E., Levandowskyy, V.: Algebraic systems theory and computer algebraic methods for some classes of linear control systems. In: Proceedings of MTNS 2006. CLIPS project: http://www.math.rwth-aachen.de/~Eva.Zerz/CLIPS/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Quadrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Cluzeau, T., Koutschan, C., Quadrat, A., Tõnso, M. (2020). Effective Algebraic Analysis Approach to Linear Systems over Ore Algebras. In: Quadrat, A., Zerz, E. (eds) Algebraic and Symbolic Computation Methods in Dynamical Systems. Advances in Delays and Dynamics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-38356-5_1

Download citation