Skip to main content

Investigating Impact-Activated Fronts with Ultrasound

  • Chapter
  • First Online:
Transient Dynamics of Concentrated Particulate Suspensions Under Shear

Part of the book series: Springer Theses ((Springer Theses))

  • 258 Accesses

Abstract

A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. By measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and by imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behavior. Based on these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions.

This chapter is based on [92].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Both \(k^*_{\text{l}}\) and \(k^*_{\text{t}}\) increase with Ï•.

  2. 2.

    Densification is likely to play a significant role at much larger impact velocities when the interstitial liquid’s compressibility can no longer be neglected [93].

References

  1. M.E. Cates, J.P. Wittmer, J.P. Bouchaud, P. Claudin, Jamming force chains and fragile matter. Phys. Rev. Lett. 81(9), 4 (1998)

    Google Scholar 

  2. N.Y. Lin, B.M. Guy, M. Hermes, C. Ness, J. Sun, W.C. Poon, I. Cohen, Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 115(22), 228304 (2015)

    Google Scholar 

  3. C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68(1), 011306 (2003)

    Google Scholar 

  4. D. Bi, J. Zhang, B. Chakraborty, R.P. Behringer, Jamming by shear. Nature 480(7377), 355–358 (2011)

    Article  ADS  Google Scholar 

  5. I.R. Peters, S. Majumdar, H.M. Jaeger, Direct observation of dynamic shear jamming in dense suspensions. Nature 532(7598), 214–217 (2016)

    Article  ADS  Google Scholar 

  6. N. Kumar, S. Luding, Memory of jamming–multiscale models for soft and granular matter. Granul. Matter 18(3), 58 (2016)

    Google Scholar 

  7. N. Fernandez, R. Mani, D. Rinaldi, D. Kadau, M. Mosquet, H. Lombois-Burger, J. Cayer-Barrioz, H.J. Herrmann, N.D. Spencer, L. Isa, Microscopic mechanism for shear thickening of non-Brownian suspensions. Phys. Rev. Lett. 111(10), 108301 (2013)

    Google Scholar 

  8. J.R. Royer, D.L. Blair, S.D. Hudson, Rheological signature of frictional interactions in shear thickening suspensions. Phys. Rev. Lett. 116(18), 188301 (2016)

    Google Scholar 

  9. R. Seto, R. Mari, J.F. Morris, M.M. Denn, Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111(21), 218301 (2013)

    Google Scholar 

  10. C. Ness, J. Sun, Shear thickening regimes of dense non-Brownian suspensions. Soft Matter 12(3), 914–924 (2016)

    Article  ADS  Google Scholar 

  11. A. Singh, R. Mari, M.M. Denn, J.F. Morris, A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62(2), 457–468 (2018)

    Article  ADS  Google Scholar 

  12. S. Sarkar, D. Bi, J. Zhang, J. Ren, R.P. Behringer, B. Chakraborty, Shear-induced rigidity of frictional particles: analysis of emergent order in stress space. Phys. Rev. E 93(4), 042901 (2016)

    Google Scholar 

  13. M. Wyart, M.E. Cates, Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112(9), 098302 (2014)

    Google Scholar 

  14. N.M. James, E. Han, R.A.L. de la Cruz, J. Jureller, H.M. Jaeger, Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat. Mater. 17(11), 965–970 (2018)

    Article  ADS  Google Scholar 

  15. B.M. Guy, M. Hermes, W.C. Poon, Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett. 115(8), 088304 (2015)

    Google Scholar 

  16. S.R. Waitukaitis, H.M. Jaeger, Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 487(7406), 205–209 (2012)

    Article  ADS  Google Scholar 

  17. M. Roche, E. Myftiu, M.C. Johnston, P. Kim, H.A. Stone, Dynamic fracture of nonglassy suspensions. Phys. Rev. Lett. 110(14), 148304 (2013)

    Google Scholar 

  18. I.R. Peters, H.M. Jaeger, Quasi-2d dynamic jamming in cornstarch suspensions: visualization and force measurements. Soft Matter 10(34), 6564–6570 (2014)

    Article  ADS  Google Scholar 

  19. S.R. Waitukaitis, L.K. Roth, V. Vitelli, H.M. Jaeger, Dynamic jamming fronts. Europhys. Lett. 102(4), 44001 (2013)

    Google Scholar 

  20. S. Manneville, L. Bécu, A. Colin, High-frequency ultrasonic speckle velocimetry in sheared complex fluids. Eur. Phys. J. Appl. Phys. 28(3), 361–373 (2004)

    Article  ADS  Google Scholar 

  21. T. Gallot, C. Perge, V. Grenard, M.A. Fardin, N. Taberlet, S. Manneville, Ultrafast ultrasonic imaging coupled to rheometry: principle and illustration. Rev. Sci. Instrum. 84(4), 045107 (2013)

    Google Scholar 

  22. X. Jia, C. Caroli, B. Velicky, Ultrasound propagation in externally stressed granular media. Phys. Rev. Lett. 82(9), 1863–1866 (1999)

    Article  ADS  Google Scholar 

  23. Y. Khidas, X. Jia, Anisotropic nonlinear elasticity in a spherical-bead pack: influence of the fabric anisotropy. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 021303 (2010)

    Google Scholar 

  24. R.S.C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, Oxford, 2007)

    Google Scholar 

  25. R.J. Urick, A sound velocity method for determining the compressibility of finely divided substances. J. Appl. Phys. 18(11), 983 (1947)

    Google Scholar 

  26. E. Han, I.R. Peters, H.M. Jaeger, High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming. Nat. Commun. 7, 12243 (2016)

    Article  ADS  Google Scholar 

  27. O.E. Petel, S. Ouellet, J. Loiseau, D.L. Frost, A.J. Higgins, A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction. Int. J. Impact Eng. 85, 83–96 (2015)

    Article  Google Scholar 

  28. E.J. Windhab, B. Ouriev, Rheological study of concentrated suspensions in pressure-driven shear flow using a novel in-line ultrasound Doppler method. Exp. Fluids 32(2), 204–211 (2002)

    Article  Google Scholar 

  29. B. Saint-Michel, H. Bodiguel, S. Meeker, S. Manneville, Simultaneous concentration and velocity maps in particle suspensions under shear from rheo-ultrasonic imaging. Phys. Rev. Appl. 8(1), 014023 (2017)

    Google Scholar 

  30. D.J. McClements, M.J.W. Povey, Ultrasound velocity as a probe. Adv. Colloid Interf. Sci. 27, 285–316 (1987)

    Article  Google Scholar 

  31. E. Han, M. Wyart, I.R. Peters, H.M. Jaeger, Shear fronts in shear-thickening suspensions. Phys. Rev. Fluids 3(7), 073301 (2018)

    Google Scholar 

  32. V. Vitelli, M. van Hecke, Marginal matters. Nature 480, 325–326 (2011)

    Article  ADS  Google Scholar 

  33. J.G. Ramsay, M.I. Huber, The Techniques of Modern Structural Geology, vol. 1, 1st edn. (Academic, Cambridge, 1983)

    Google Scholar 

  34. E. Han, L. Zhao, N. Van Ha, S.T. Hsieh, D.B. Szyld, H.M. Jaeger, Dynamic jamming of dense suspensions under tilted impact. Phys. Rev. Fluids 4, 063304 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, E. (2020). Investigating Impact-Activated Fronts with Ultrasound. In: Transient Dynamics of Concentrated Particulate Suspensions Under Shear. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-38348-0_3

Download citation

Publish with us

Policies and ethics