Skip to main content

High-Field MRI In-Room Guidance for Radiotherapy Adaptation

  • Chapter
  • First Online:
Imaging and Interventional Radiology for Radiation Oncology

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 648 Accesses

Abstract

Intra-fractional motion is the main source of uncertainty when targeting treatment sites in the thorax and upper abdomen. Predominately periodic respiratory and cardiac-induced motion, and irregular gastrointestinal activity displace and deform targets and healthy organs compared to their observed position during treatment planning. Adapting treatment to this complex motion pattern requires precise and frequent on-board imaging. Current X-ray based in-room imaging techniques induce additional radiation exposure, suffer from poor soft-tissue contrast in the 2D projection images, and usually require implanted fiducial markers for guidance. In comparison, high-field magnetic resonance imaging (MRI) offers customizable, diagnostic-quality soft-tissue contrast and much greater flexibility in selecting the appropriate image dimension for detecting anatomical motion.

In this chapter we will first introduce the clinical rationale for in-room guidance based on MRI. A survey will highlight existing technical implementations while focussing on the Elekta Unity MR-linac. We will then identify suitable MRI techniques for radiotherapy adaptations. This will include an overview of typical sequences used for anatomical imaging. Several possible image dimensions, ranging from real-time 2D cine imaging to retrospectively sorted 4D motion models will be presented in detail. The resulting increase in observer confidence due to the higher image quality is complemented with an array of suitable inter-fractional and intra-fractional treatment adaptations based on on-line MRI. We will emphasize the benefits and challenges of several motion mitigation techniques including beam gating, dynamic tumour tracking, and intra-fractional re-planning based on on-line accumulated dose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahunbay EE, Peng C, Chen GP, Narayanan S, Yu C, Lawton C, Li XA (2008) An on-line replanning scheme for interfractional variations. Med Phys 35(8):3607–3615

    PubMed  Google Scholar 

  • Ahunbay EE, Peng C, Holmes S, Godley A, Lawton C, Li XA (2010) Online adaptive replanning method for prostate radiotherapy. Int J Radiat Oncol Biol Phys 77(5):1561–1572

    PubMed  Google Scholar 

  • Balaban EP, Mangu PB, Khorana AA, Shah MA, Mukherjee S, Crane CH, Javle MM, Eads JR, Allen P, Ko AH, et al (2016) Locally advanced, unresectable pancreatic cancer: American Society of Clinical Oncology Clinical Practice guideline. J Clin Oncol 34(22):2654–2668

    PubMed  Google Scholar 

  • Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB (2010) Fat and water magnetic resonance imaging. J Magn Reson Imaging 31(1):4–18

    PubMed  Google Scholar 

  • Bol G, Lagendijk J, Raaymakers B (2013) Virtual couch shift (VCS): accounting for patient translation and rotation by online IMRT re-optimization. Phys Med Biol 58(9):2989. https://doi.org/10.1088/0031-9155/58/9/2989

    CAS  PubMed  Google Scholar 

  • Borman PTS, Tijssen RHN, Bos C, Moonen CTW, Raaymakers BW, Glitzner M (2018) Characterization of imaging latency for real-time MRI-guided radiotherapy. Phys Med Biol 63(15):155023. https://doi.org/10.1088/1361-6560/aad2b7

    CAS  PubMed  Google Scholar 

  • Colvill E, Booth JT, O’Brien RT, Eade TN, Kneebone AB, Poulsen PR, Keall PJ (2015) Multileaf collimator tracking improves dose delivery for prostate cancer radiation therapy: results of the first clinical trial. Int J Radiat Oncol Biol Phys 92(5):1141–1147

    PubMed  Google Scholar 

  • Crijns S, Raaymakers B, Lagendijk J (2012) Proof of concept of MRI-guided tracked radiation delivery: tracking one-dimensional motion. Phys Med Biol 57(23):7863

    CAS  PubMed  Google Scholar 

  • De Meerleer G, Khoo V, Escudier B, Joniau S, Bossi A, Ost P, Briganti A, Fonteyne V, Van Vulpen M, Lumen N, et al (2014) Radiotherapy for renal-cell carcinoma. Lancet Oncol 15(4):e170–e177

    PubMed  Google Scholar 

  • Deng Z, Pang J, Yang W, Yue Y, Sharif B, Tuli R, Li D, Fraass B, Fan Z (2016) Four-dimensional MRI using three-dimensional radial sampling with respiratory self-gating to characterize temporal phase-resolved respiratory motion in the abdomen. Magn Reson Med 75(4):1574–1585

    PubMed  Google Scholar 

  • Dinkel J, Hintze C, Tetzlaff R, Huber PE, Herfarth K, Debus J, Kauczor HU, Thieke C (2009) 4D-MRI analysis of lung tumor motion in patients with hemidiaphragmatic paralysis. Radiother Oncol 91(3):449–454

    PubMed  Google Scholar 

  • Edmund JM, Nyholm T (2017) A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol 12(1):28

    PubMed  PubMed Central  Google Scholar 

  • Fast MF, Nill S, Bedford JL, Oelfke U (2014) Dynamic tumor tracking using the Elekta Agility MLC. Med Phys 41(11):111719. https://doi.org/10.1118/1.4899175

    PubMed  Google Scholar 

  • Fast M, Kamerling C, Ziegenhein P, Menten M, Bedford J, Nill S, Oelfke U (2016) Assessment of MLC tracking performance during hypofractionated prostate radiotherapy using real-time dose reconstruction. Phys Med Biol 61(4):1546. https://doi.org/10.1088/0031-9155/61/4/1546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fast MF, Eiben B, Menten MJ, Wetscherek A, Hawkes DJ, McClelland JR, Oelfke U (2017) Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: a comparative study. Radiother Oncol 125(3):485–491. https://doi.org/10.1016/j.radonc.2017.09.013

  • Fast M, van de Schoot A, van de Lindt T, Carbaat C, van der Heide U, Sonke JJ (2019) Tumor trailing for liver SBRT on the MR-Linac. Int J Radiat Oncol Biol Phys 103(2):468–478. https://doi.org/10.1016/j.ijrobp.2018.09.011

  • Feng M, Balter JM, Normolle D, Adusumilli S, Cao Y, Chenevert TL, Ben-Josef E (2009) Characterization of pancreatic tumor motion using cine MRI: surrogates for tumor position should be used with caution. Int J Radiat Oncol Biol Phys 74(3):884–891

    PubMed  PubMed Central  Google Scholar 

  • Ge Y, O’Brien RT, Shieh CC, Booth JT, Keall PJ (2014) Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator. Med Phys 41(6):061703. https://doi.org/10.1118/1.4873682

    PubMed  PubMed Central  Google Scholar 

  • Gierga DP, Brewer J, Sharp GC, Betke M, Willett CG, Chen GT (2005) The correlation between internal and external markers for abdominal tumors: implications for respiratory gating. Int J Radiat Oncol Biol Phys 61(5):1551–1558. https://doi.org/10.1016/j.ijrobp.2004.12.013

  • Giraud P, Houle A (2013) Respiratory gating for radiotherapy: main technical aspects and clinical benefits. ISRN Pulmonol 2013: 1–13. http://dx.doi.org/10.1155/2013/519602

  • Glitzner M, Crijns S, De Senneville BD, Kontaxis C, Prins F, Lagendijk J, Raaymakers B (2015) On-line MR imaging for dose validation of abdominal radiotherapy. Phys Med Biol 60(22):8869

    CAS  PubMed  Google Scholar 

  • Glitzner M, Crijns S, De Senneville BD, Lagendijk J, Raaymakers B (2015) On the suitability of Elektas Agility 160 MLC for tracked radiation delivery: closed-loop machine performance. Phys Med Biol 60(5):2005–2017

    CAS  PubMed  Google Scholar 

  • Glitzner M, Woodhead PL, Lagendijk JJW, Raaymakers BW (2017) TU-FG-FS2-10: real-time performance of the Elekta MR-linac clinical prototype. Med Phys 44(6):3157

    Google Scholar 

  • Glitzner M, Woodhead P, Borman P, Lagendijk J, Raaymakers B (2019) Technical Note: MLC-tracking performance on the Elekta unity MRI-linac. Phys Med Biol 64(15):15NT02

    Google Scholar 

  • Heid O, Kleemann M, Heller J (2015) Integrated MRI-LINAC radiotherapy machine. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol 23

    Google Scholar 

  • Howlader N, Noone A, Krapcho M, Miller D, Bishop K, Altekruse S, Kosary C, Yu M, Ruhl J, Tatalovich Z, et al (2016) Seer cancer statistics review, 1975–2013. National Cancer Institute, Bethesda

    Google Scholar 

  • Jaffray DA, Langen KM, Mageras G, Dawson LA, Yan D, Mundt AJ, Fraass B (2013) Safety considerations for IGRT: executive summary. Pract Radiat Oncol 3(3):167–170

    PubMed  PubMed Central  Google Scholar 

  • Jaffray DA, Carlone MC, Milosevic MF, Breen SL, Stanescu T, Rink A, Alasti H, Simeonov A, Sweitzer MC, Winter JD (2014) A facility for magnetic resonance-guided radiation therapy. Semin Radiat Oncol 24(3):193–195. https://doi.org/10.1016/j.semradonc.2014.02.012

    PubMed  Google Scholar 

  • Jiang SB (2006) Technical aspects of image-guided respiration-gated radiation therapy. Med Dosim 31(2):141–151. http://dx.doi.org/10.1016/j.meddos.2005.12.005. http://www.sciencedirect.com/science/article/pii/S0958394705001998. Image-Guided Radiation Therapy, Part 2: Cone-Beam Imaging and Respiratory Motion

  • Kamerling C, Fast M, Ziegenhein P, Nill S, Oelfke U (2016a) TH-CD-202-12: online inter-beam replanning based on real-time dose reconstruction. Med Phys 43(6):3879–3879. https://doi.org/10.1118/1.4958169

  • Kamerling CP, Fast MF, Ziegenhein P, Menten MJ, Nill S, Oelfke U (2016b) Real-time 4D dose reconstruction for tracked dynamic MLC deliveries for lung SBRT. Med Phys 43(11):6072–6081. https://doi.org/10.1118/1.4965045

  • Keall P, Kini V, Vedam S, Mohan R (2001) Motion adaptive X-ray therapy: a feasibility study. Phys Med Biol 46(1):1. https://doi.org/10.1088/0031-9155/46/1/301

    CAS  PubMed  Google Scholar 

  • Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low DA, Murphy MJ, Murray BR, Ramsey CR, Van Herk MB, Vedam SS, Wong JW, Yorke E (2006) The management of respiratory motion in radiation oncology report of AAPM task group 76. Med Phys 33(10):3874–900. https://doi.org/10.1118/1.2349696

    PubMed  Google Scholar 

  • Keall PJ, Barton M, Crozier S, on behalf of the Australian MRI-Linac Program, including contributors from Ingham Institute Illawarra Cancer Care Centre Liverpool Hospital Stanford University Universities of Newcastle Queensland Sydney Western Sydney and Wollongong (2014) The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol 24(3):203–206. https://doi.org/10.1016/j.semradonc.2014.02.015

  • Keesman R, van de Lindt TN, Juan-Cruz C, van den Wollenberg W, van der Bijl E, Nowee ME, Sonke JJ, van der Heide UA, Fast MF (2019) Correcting geometric image distortions in slice-based 4D-MRI on the MR-linac. Med Phys 46(7):3044–3054. https://doi.org/10.1002/mp.13602

  • Kirilova A, Lockwood G, Choi P, Bana N, Haider MA, Brock KK, Eccles C, Dawson LA (2008) Three-dimensional motion of liver tumors using cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys 71(4):1189–1195

    PubMed  Google Scholar 

  • Kontaxis C, Bol G, Stemkens B, Glitzner M, Prins F, Kerkmeijer L, Lagendijk J, Raaymakers B (2017) Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac. Phys Med Biol 62(18):7233

    CAS  PubMed  Google Scholar 

  • Kotte AN, Hofman P, Lagendijk JJ, van Vulpen M, van der Heide UA (2007) Intrafraction motion of the prostate during external-beam radiation therapy: analysis of 427 patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys 69(2):419–425

    PubMed  Google Scholar 

  • Lever FM, Lips IM, Crijns SP, Reerink O, van Lier AL, Moerland MA, van Vulpen M, Meijer GJ (2014) Quantification of esophageal tumor motion on cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys 88(2):419–424

    PubMed  Google Scholar 

  • Li G, Wei J, Kadbi M, Moody J, Sun A, Zhang S, Markova S, Zakian K, Hunt M, Deasy JO (2017) Novel super-resolution approach to time-resolved volumetric 4-dimensional magnetic resonance imaging with high spatiotemporal resolution for multi-breathing cycle motion assessment. Int J Radiat Oncol Biol Phys 98(2):454–462. http://dx.doi.org/10.1016/j.ijrobp.2017.02.016. http://www.sciencedirect.com/science/article/pii/S0360301617303942

  • Maubon AJ, Ferru JM, Berger V, Soulage MC, DeGraef M, Aubas P, Coupeau P, Dumont E, Rouanet JP (1999) Effect of field strength on MR images: comparison of the same subject at 0.5, 1.0, and 1.5 T. Radiographics 19(4):1057–1067

    CAS  PubMed  Google Scholar 

  • Menten MJ, Fast MF, Nill S, Kamerling CP, McDonald F, Oelfke U (2016) Lung stereotactic body radiotherapy with an MR-linac – quantifying the impact of the magnetic field and real-time tumor tracking. Radiother Oncol 119(3):461–466. http://dx.doi.org/10.1016/j.radonc.2016.04.019

    PubMed  PubMed Central  Google Scholar 

  • Menten MJ, Wetscherek A, Fast MF (2017) MRI-guided lung SBRT: present and future developments. Phys Med 44:139–149. https://doi.org/10.1016/j.ejmp.2017.02.003

  • Moran JM, Dempsey M, Eisbruch A, Fraass BA, Galvin JM, Ibbott GS, Marks LB (2011) Safety considerations for IMRT: executive summary. Med Phys 38(9):5067–5072

    PubMed  Google Scholar 

  • Nederveen AJ, van der Heide UA, Dehnad H, van Moorselaar RJA, Hofman P, Lagendijk JJ (2002) Measurements and clinical consequences of prostate motion during a radiotherapy fraction. Int J Radiat Oncol Biol Phys 53(1):206–214

    PubMed  Google Scholar 

  • Oliveira FP, Tavares JMR (2014) Medical image registration: a review. Comput Methods Biomech Biomed Eng 17(2):73–93

    Google Scholar 

  • Overweg J, Raaymakers B, Lagendijk J, Brown K (2009) System for MRI guided radiotherapy. In: Proceedings of International Society on Magnetic Resonance in Medicine (ISMRM), Concord, 2009, p 593

    Google Scholar 

  • Paganelli C, Summers P, Bellomi M, Baroni G, Riboldi M (2015) Liver 4DMRI: a retrospective image-based sorting method. Med Phys 42(8):4814–4821

    PubMed  Google Scholar 

  • Paganelli C, Kipritidis J, Lee D, Baroni G, Keall P, Riboldi M (2018) Image-based retrospective 4D MRI in external beam radiotherapy: a comparative study with a digital phantom. Med Phys 45(7):3161–3172. https://doi.org/10.1002/mp.12965

  • Paulson ES, Crijns SP, Keller BM, Wang J, Schmidt MA, Coutts G, van der Heide UA (2016) Consensus opinion on MRI simulation for external beam radiation treatment planning. Radiother Oncol 121(2):187–192

    PubMed  Google Scholar 

  • Plathow C, Klopp M, Fink C, Sandner A, Hof H, Puderbach M, Herth F, Schmähl A, Kauczor H (2005) Quantitative analysis of lung and tumour mobility: comparison of two time-resolved MRI sequences. Br J Radiol 78(933):836

    CAS  PubMed  Google Scholar 

  • Plathow C, Schoebinger M, Herth F, Tuengerthal S, Meinzer HP, Kauczor HU (2009) Estimation of pulmonary motion in healthy subjects and patients with intrathoracic tumors using 3D-dynamic MRI: initial results. Korean J Radiol 10(6):559–567

    PubMed  PubMed Central  Google Scholar 

  • Poulsen PR, Cho B, Sawant A, Ruan D, Keall PJ (2010) Detailed analysis of latencies in image-based dynamic MLC tracking. Med Phys 37(9):4998–5005

    PubMed  PubMed Central  Google Scholar 

  • Poulsen P, Knap M, Brix L, Sørensen T, Schmidt M, Pedersen E (2016) Real-time magnetic resonance imaging of simultaneous lung tumor motion and involved mediastinal lymph node motion. Int J Radiat Oncol Biol Phys 96(2):E686–E687

    Google Scholar 

  • Rank CM, Heußer T, Buzan MT, Wetscherek A, Freitag MT, Dinkel J, Kachelrieß M (2017) 4d respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling. Magn Reson Med 77(3):1170–1183

    PubMed  Google Scholar 

  • Reeth E, Tan CH, Tham IW, Poh CL (2015) Isotropic reconstruction of a 4-D MRI thoracic sequence using super-resolution. Magn Reson Med 73(2):784–793

    PubMed  Google Scholar 

  • Ries M, de Senneville BD, Roujol S, Berber Y, Quesson B, Moonen C (2010) Real-time 3D target tracking in mri guided focused ultrasound ablations in moving tissues. Magn Reson Med 64(6):1704–1712. https://doi.org/10.1002/mrm.22548

    PubMed  Google Scholar 

  • Rutt BK, Lee DH (1996) The impact of field strength on image quality in MRI. J Magn Reson Imaging 6(1):57–62. https://doi.org/10.1002/jmri.1880060111

    CAS  PubMed  Google Scholar 

  • Sawant A, Venkat R, Srivastava V, Carlson D, Povzner S, Cattell H, Keall P (2008) Management of three-dimensional intrafraction motion through real-time DMLC tracking. Med Phys 35(5):2050–2061

    PubMed  PubMed Central  Google Scholar 

  • Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13(11):2409–2418

    PubMed  Google Scholar 

  • Schlosser J, Salisbury K, Hristov D (2010) Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery. Med Phys 37(12):6357–6367

    PubMed  Google Scholar 

  • Sharp G, Fritscher KD, Pekar V, Peroni M, Shusharina N, Veeraraghavan H, Yang J (2014) Vision 20/20: perspectives on automated image segmentation for radiotherapy. Med Phys 41(5):050902

    PubMed  PubMed Central  Google Scholar 

  • Stam MK, Van Vulpen M, Barendrecht MM, Zonnenberg BA, Intven M, Crijns SP, Lagendijk JJ, Raaymakers BW (2013) Kidney motion during free breathing and breath hold for MR-guided radiotherapy. Phys Med Biol 58(7):2235

    PubMed  Google Scholar 

  • Stemkens B, Tijssen RH, de Senneville BD, Heerkens HD, van Vulpen M, Lagendijk JJ, van den Berg CA (2015) Optimizing 4-dimensional magnetic resonance imaging data sampling for respiratory motion analysis of pancreatic tumors. Int J Radiat Oncol Biol Phys 91(3):571–578. http://dx.doi.org/10.1016/j.ijrobp.2014.10.050. http://www.sciencedirect.com/science/article/pii/S0360301614043569

  • Stemkens B, Tijssen RH, de Senneville BD, Lagendijk JJ, van den Berg CA (2016) Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy. Phys Med Biol 61(14):5335

    CAS  PubMed  Google Scholar 

  • Stemkens B, Glitzner M, Kontaxis C, De Senneville BD, Prins FM, Crijns SP, Kerkmeijer LG, Lagendijk JJ, Van Den Berg CA, Tijssen RH (2017) Effect of intra-fraction motion on the accumulated dose for free-breathing MR-guided stereotactic body radiation therapy of renal-cell carcinoma. Phys Med Biol 62(18):7407

    PubMed  Google Scholar 

  • Stemkens B, Paulson ES, Tijssen RHN (2018) Nuts and bolts of 4D-MRI for radiotherapy. Phys Med Biol 63(21):21TR01. https://doi.org/10.1088/1361-6560/aae56d

  • Tacke MB, Nill S, Krauss A, Oelfke U (2010) Real-time tumor tracking: automatic compensation of target motion using the Siemens 160 MLC. Med Phys 37(2):753. https://doi.org/10.1118/1.3284543

    PubMed  Google Scholar 

  • van de Lindt T, Sonke JJ, Nowee M, Jansen E, van Pelt V, van der Heide U, Fast M (2018a) A self-sorting coronal 4D-MRI method for daily image guidance of liver lesions on an MR-Linac. Int J Radiat Oncol Biol Phys 102(4):875–884. https://doi.org/10.1016/j.ijrobp.2018.05.029

  • van de Lindt TN, Fast MF, van der Heide UA, Sonke JJ (2018b) Retrospective self-sorted 4D-MRI for the liver. Radiother Oncol 127(3):474–480. https://doi.org/10.1016/j.radonc.2018.05.006

  • van der Heide UA, Kotte AN, Dehnad H, Hofman P, Lagendijk JJ, van Vulpen M (2007) Analysis of fiducial marker-based position verification in the external beam radiotherapy of patients with prostate cancer. Radiother Oncol 82(1):38–45

    PubMed  Google Scholar 

  • van der Heide UA, Houweling AC, Groenendaal G, Beets-Tan RG, Lambin P (2012) Functional MRI for radiotherapy dose painting. Magn Reson Imaging 30(9):1216–1223

    PubMed  PubMed Central  Google Scholar 

  • van Herk M, Remeijer P, Rasch C, Lebesque JV (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47(4):1121–1135

    PubMed  Google Scholar 

  • von Siebenthal M, Szekely G, Gamper U, Boesiger P, Lomax A, Cattin P (2007) 4D MR imaging of respiratory organ motion and its variability. Phys Med Biol 52(6):1547

    Google Scholar 

  • Welsh J, Settle SH, Amini A, Xiao L, Suzuki A, Hayashi Y, Hofstetter W, Komaki R, Liao Z, Ajani JA (2012) Failure patterns in patients with esophageal cancer treated with definitive chemoradiation. Cancer 118(10):2632–2640

    PubMed  Google Scholar 

  • Winkel D, Bol G, van Asselen B, Hes J, Scholten V, Kerkmeijer L, Raaymakers B (2016) Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer. Phys Med Biol 61(24):8587

    CAS  PubMed  Google Scholar 

  • Winkel D, Bol GH, Kroon PS, van Asselen B, Hackett SS, Werensteijn-Honingh AM, Intven MP, Eppinga WS, Tijssen RH, Kerkmeijer LG, et al (2019) Adaptive radiotherapy: the Elekta Unity MR-linac concept. Clin Transl Radiat Oncol 18:54–59

    PubMed  PubMed Central  Google Scholar 

  • Wu QJ, Li T, Wu Q, Yin FF (2011) Adaptive radiation therapy: technical components and clinical applications. Cancer J 17(3):182–189

    PubMed  Google Scholar 

Download references

Acknowledgements

The University Medical Center Utrecht (UMCU) is part of the Elekta MR-linac Consortium and we acknowledge financial and technical support from Elekta AB under research agreements. We are grateful to Uulke van der Heide, Tessa van de Lindt (both NKI) and Rob Tijssen (UMCU) for very useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Fast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fast, M.F., Glitzner, M. (2020). High-Field MRI In-Room Guidance for Radiotherapy Adaptation. In: Beets-Tan, R., Oyen, W., Valentini, V. (eds) Imaging and Interventional Radiology for Radiation Oncology. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-030-38261-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38261-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38260-5

  • Online ISBN: 978-3-030-38261-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics