Skip to main content

The Status of the QSSA Approximation in Stochastic Simulations of Reaction Networks

  • Chapter
  • First Online:
2018 MATRIX Annals

Part of the book series: MATRIX Book Series ((MXBS,volume 3))

Abstract

Stochastic models of chemical reactions are needed in many contexts in which the copy numbers of species are low, but only the simplest models can be treated analytically. However, direct simulation of computational models for systems with many components can be very time-consuming, and approximate methods are frequently used. One method that has been used in systems with multiple time scales is to approximate the fast dynamics, and in this note we study one such approach, in which the deterministic QSSH is used for the fast variables and the result used in the rate equations for the slow variables. We examine the classical Michaelis-Menten kinetics using this approach to determine when it is applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, A., Adams, R., Castellani, G.C., Shouval, H.Z.: On the precision of quasi steady state assumptions in stochastic dynamics. The Journal of Chemical Physics 137(4), 044,105 (2012). DOI https://doi.org/10.1063/1.4731754. URL http://aip.scitation.org/doi/10.1063/1.4731754

  2. Balázsi, G., van Oudenaarden, A., Collins, J.J.: Cellular decision making and biological noise: from microbes to mammals. Cell 144(6), 910–925 (2011)

    Google Scholar 

  3. Ball, P., Borley, N.R.: The self-made tapestry: pattern formation in nature, vol. 198. Oxford University Press Oxford (1999)

    Google Scholar 

  4. Barik, D., Paul, M.R., Baumann, W.T., Cao, Y., Tyson, J.J.: Stochastic simulation of enzyme-catalyzed reactions with disparate timescales. Biophysical journal 95(8), 3563–74 (2008). DOI https://doi.org/10.1529/biophysj.108.129155. URL http://www.ncbi.nlm.nih.gov/pubmed/18621809 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2553150

  5. Darden, T.A.: Enzyme kinetics: stochastic vs. deterministic models. Instabilities, bifurcations, and fluctuations in chemical systems (Austin, Tex., 1980) pp. 248–272 (1982)

    Google Scholar 

  6. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002)

    Google Scholar 

  7. Gillespie, D., Sanft, K., Petzold, L.: Legitimacy of the stochastic MichaelisMenten approximation. IET Systems Biology (2011). DOI https://doi.org/10.1049/iet-syb.2009.0057

  8. Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122, 184,102– (2005)

    Google Scholar 

  9. Kan, X., Lee, C.H., Othmer, H.G.: A multi-time-scale analysis of chemical reaction networks: IL Stochastic systems. Journal of Mathematical Biology 73(5), 1081–1129 (2016). DOI https://doi.org/10.1007/s00285-016-0980-x

  10. Kang, H.W., Kurtz, T.G., et al.: Separation of time-scales and model reduction for stochastic reaction networks. The Annals of Applied Probability 23(2), 529–583 (2013)

    Google Scholar 

  11. Kim, J.K., Josić, K., Bennett, M.R.: The Validity of Quasi-Steady-State Approximations in Discrete Stochastic Simulations. Biophysical Journal 107(3), 783–793 (2014). DOI https://doi.org/10.1016/j.bpj.2014.06.012. URL https://www.sciencedirect.com/science/article/pii/S0006349514006183

  12. Kim, J.K., Josić, K., Bennett, M.R.: The relationship between stochastic and deterministic quasi-steady state approximations. BMC systems biology 9(1), 87 (2015). DOI https://doi.org/10.1186/s12918-015-0218-3. URL http://www.biomedcentral.com/1752-0509/9/87

  13. Kurtz, T.G.: The Relationship between Stochastic and Deterministic Models for Chemical Reactions. The Journal of Chemical Physics 57(7), 2976–2978 (1972). DOI https://doi.org/10.1063/1.1678692. URL http://aip.scitation.org/doi/10.1063/1.1678692

  14. Lawson, M.J., Petzold, L., Hellander, A.: Accuracy of the Michaelis-Menten approximation when analysing effects of molecular noise. Journal of the Royal Society, Interface 12(106), 20150,054 (2015). DOI https://doi.org/10.1098/rsif.2015.0054. URL http://www.ncbi.nlm.nih.gov/pubmed/25833240 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4424680

  15. Lee, C.H., Othmer, H.G.: A multi-time-scale analysis of chemical reaction networks: I. Deterministic systems. Journal of Mathematical Biology 60(3), 387–450 (2010). DOI https://doi.org/10.1007/s00285-009-0269-4

  16. Othmer, H.G.: Analysis of complex reaction networks in signal transduction, gene control and metabolism (2006). Lecture Notes – University of Minnesota

    Google Scholar 

  17. Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. The Journal of Chemical Physics 118(11), 4999–5010 (2003). DOI https://doi.org/10.1063/1.1545446. URL http://aip.scitation.org/doi/10.1063/1.1545446

  18. Segel, L.A., Slemrod, M.: The Quasi-Steady-State Assumption: A Case Study in Perturbation. SIAM Review (1989). DOI https://doi.org/10.1137/1031091

  19. Thomas, P., Grima, R., Straube, A.V.: Rigorous elimination of fast stochastic variables from the linear noise approximation using projection operators. Physical Review E 86(4), 41,110 (2012)

    Google Scholar 

  20. Thomas, P., Straube, A.V., Grima, R.: Communication: Limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks. Journal of Chemical Physics 135(18), 1–7 (2011). DOI https://doi.org/10.1063/1.3661156

  21. Thomas, P., Straube, A.V., Grima, R.: The slow-scale linear noise approximation: An accurate, reduced stochastic description of biochemical networks under timescale separation conditions. BMC Systems Biology 6(2012). DOI https://doi.org/10.1186/1752-0509-6-39

  22. Tsimring, L.S.: Noise in biology. Reports on Progress in Physics 77(2), 026,601 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans G. Othmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bobadilla, A.V.P., Bartmanski, B.J., Grima, R., Othmer, H.G. (2020). The Status of the QSSA Approximation in Stochastic Simulations of Reaction Networks. In: de Gier, J., Praeger, C., Tao, T. (eds) 2018 MATRIX Annals. MATRIX Book Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-38230-8_10

Download citation

Publish with us

Policies and ethics