Skip to main content

Treatment of Brittle Fracture in Solids with the Virtual Element Method

  • Chapter
  • First Online:
Book cover Virtual Design and Validation

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 93))

Abstract

Computational Mechanics has many applications in engineering. Its range of application has been enlarged widely in the last decades. Still new developments are made to which a new discretization scheme belongs: the virtual element method (VEM). Despite being only few years under development the application range of VEM in engineering includes formulations for linear and nonlinear material responses. In this contribution the focus is on fracture mechanics. Especially the treatment of crack propagation will be discussed where VEM has some advantages. The performance of the formulation is underlined by means of representative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zienkiewicz, O. C., Taylor, R., & Zhu, J. Z. (2005). The finite element method: Its basis and fundamentals. Elsevier.

    Google Scholar 

  2. Wriggers, P. (2008). Nonlinear finite elements. Berlin, Heidelberg, New York: Springer.

    MATH  Google Scholar 

  3. Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis: Toward integration of CAD and FEA. Wiley.

    Google Scholar 

  4. Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., & Russo, A. (2013). Basic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences, 23(1), 199–214.

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi, F., Buffa, A., & Lipnikov, K. (2009). Mimetic finite differences for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis, 43(2), 277–295.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cangiani, A., Manzini, G., Russo, A., & Sukumar, N. (2015). Hourglass stabilization and the virtual element method. International Journal for Numerical Methods in Engineering, 102(3–4), 404–436.

    Article  MathSciNet  MATH  Google Scholar 

  7. Gain, A. L., Talischi, C., & Paulino, G. H. (2014). On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Computer Methods in Applied Mechanics and Engineering, 282, 132–160.

    Article  MathSciNet  MATH  Google Scholar 

  8. Wriggers, P., Rust, W. T., & Reddy, B. D. (2016). A virtual element method for contact. Computational Mechanics, 58(6), 1039–1050.

    Article  MathSciNet  MATH  Google Scholar 

  9. Benedetto, M. F., Berrone, S., & Scialó, S. (2016). A globally conforming method for solving flow in discrete fracture networks using the virtual element method. Finite Elements in Analysis and Design, 109, 23–36.

    Article  Google Scholar 

  10. Hussein, A., Hudobivnik, B., Aldakheel, F., Wriggers, P., Guidault, P. A., & Allix, O. (2018). A virtual element method for crack propagation. PAMM, 18(1), 1–2.

    Article  Google Scholar 

  11. Nguyen-Thanh, V. M., Zhuang, X., Nguyen-Xuan, H., Rabczuk, T., & Wriggers, P. (2018). A virtual element method for 2D linear elastic fracture analysis. Computer Methods in Applied Mechanics and Engineering, 340, 366–395.

    Article  MathSciNet  Google Scholar 

  12. Hussein, A., Hudobivnik, B., Aldakheel, F., Wriggers, P., Guidault, P. A., & Allix, O. (2019). A computational framework for brittle crack propagation based on an efficient virtual element method. In Finite elements in analysis and design.

    Google Scholar 

  13. De Bellis, M. L., Wriggers, P., Hudobivnik, B., & Zavarise, G. (2018). Virtual element formulation for isotropic damage. Finite Elements in Analysis and Design, 144, 38–48.

    Article  MathSciNet  Google Scholar 

  14. Aldakheel, F., Hudobivnik, B., Hussein, A., & Wriggers, P. (2018). Phase-field modeling of brittle fracture using an efficient virtual element scheme. Computer Methods in Applied Mechanics and Engineering, 341, 443–466.

    Article  MathSciNet  Google Scholar 

  15. Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), 229–256.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fleming, M., Chu, Y. A., Moran, B., & Belytschko, T. (1998). Enriched element-free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering, 40(8), 1483–1504.

    Article  MathSciNet  Google Scholar 

  17. Ingraffea, A. R., Blandford, G. E., Liggett, J. A. (1983). Automatic modelling of mixed-mode fatigue and quasi-static crack propagation using the boundary element method. In Fracture Mechanics: Fourteenth Symposium Volume I: Theory and Analysis. ASTM International.

    Google Scholar 

  18. Portela, A., Aliabadi, M. H., & Rooke, D. P. (1992). The dual boundary element method: Effective implementation for crack problems. International Journal for Numerical Methods in Engineering, 33(6), 1269–1287.

    Article  MATH  Google Scholar 

  19. Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), 601–620.

    Article  MATH  Google Scholar 

  20. Sukumar, N., & Prévost, J. H. (2003). Modeling quasi-static crack growth with the extended finite element method part I: Computer implementation. International Journal of Solids and Structures, 40(26), 7513–7537.

    Article  MATH  Google Scholar 

  21. Chan, S. K., Tuba, I. S., & Wilson, W. K. (1970). On the finite element method in linear fracture mechanics. Engineering Fracture Mechanics, 2(1), 1–17.

    Article  Google Scholar 

  22. Paris, P. C., & Sih, G. C. (1965). Stress analysis of cracks. In Fracture toughness testing and its applications. ASTM International.

    Google Scholar 

  23. Hellen, T. K. (1975). On the method of virtual crack extensions. International Journal for Numerical Methods in Engineering, 9(1), 187–207.

    Article  MathSciNet  MATH  Google Scholar 

  24. Rice, J. R., & Rosengren, G. F. (1968). Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids, 16(1), 1–12.

    Article  MATH  Google Scholar 

  25. Eshelby, J. D. (1974). The calculation of energy release rates. In Prospects of fracture mechanics, pp. 69–84.

    Google Scholar 

  26. Yau, J. F., Wang, S. S., & Corten, H. T. (1980a). A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Journal of Applied Mechanics, 47(2), 335–341.

    Article  MATH  Google Scholar 

  27. Barsoum, R. S. (1974). Application of quadratic isoparametric finite elements in linear fracture mechanics. International Journal of Fracture, 10(4), 603–605.

    Article  Google Scholar 

  28. Henshell, R. D., & Shaw, K. G. (1975). Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering, 9(3), 495–507.

    Article  MATH  Google Scholar 

  29. Tong, P., Pian, T. H. H., & Lasry, S. J. (1973). A hybrid-element approach to crack problems in plane elasticity. International Journal for Numerical Methods in Engineering, 7(3), 297–308.

    Article  MATH  Google Scholar 

  30. Karihaloo, B. L., & Xiao, Q. Z. (2001). Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p-adaptivity. Engineering Fracture Mechanics, 68(15), 1609–1630.

    Article  Google Scholar 

  31. Miehe, C., Welschinger, F., & Hofacker, M. (2010). Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 83, 1273–1311.

    Article  MathSciNet  MATH  Google Scholar 

  32. Borden, M. J., Verhoosel, C. V., Scott, M. A., Hughes, T. J. R., & Landis, C. M. (2012). A phase-field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering, 217–220, 77–95.

    Article  MathSciNet  MATH  Google Scholar 

  33. Verhoosel, C. V., & de Borst, R. (2013). A phase-field model for cohesive fracture. International Journal for Numerical Methods in Engineering, 96, 43–62.

    Article  MathSciNet  MATH  Google Scholar 

  34. Hesch, C., & Weinberg, K. (2014). Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. International Journal for Numerical Methods in Engineering, 99, 906–924.

    Article  MathSciNet  MATH  Google Scholar 

  35. Kuhn, C., Schlüter, A., & Müller, R. (2015). On degradation functions in phase field fracture models. Computational Materials Science, 108, 374–384.

    Article  Google Scholar 

  36. Sargado, J. M., Keilegavlen, E., Berre, I., Nordbotten, J. M. (2017). High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. Journal of the Mechanics and Physics of Solids, 2017. ISSN 0022-5096.

    Google Scholar 

  37. Ambati, M., Gerasimov, T., & De Lorenzis, L. (2015). A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computational Mechanics, 55(2), 383–405.

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, X., Vignes, C., Sloan, S. W., & Sheng, D. (2017). Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale. Computational Mechanics, 59(5), 737–752.

    Article  MathSciNet  Google Scholar 

  39. Heider, Y., & Markert, B. (2017). A phase-field modeling approach of hydraulic fracture in saturated porous media. Mechanics Research Communications, 80, 38–46.

    Article  Google Scholar 

  40. Ehlers, W., & Luo, C. (2017). A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing. Computer Methods in Applied Mechanics and Engineering, 315, 348–368.

    Article  MathSciNet  Google Scholar 

  41. Alessi, R., Vidoli, S., De Lorenzis, L. (2017). A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case. In Engineering fracture mechanics, 2017. ISSN 0013-7944. http://www.sciencedirect.com/science/article/pii/S0013794417308469, https://doi.org/10.1016/j.engfracmech.2017.11.036.

  42. Paggi, M., & Reinoso, J. (2017). Revisiting the problem of a crack impinging on an interface: A modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model. Computer Methods in Applied Mechanics and Engineering, 321, 145–172.

    Article  MathSciNet  Google Scholar 

  43. Kakouris, E. G., & Triantafyllou, S. P. (2017). Phase-field material point method for brittle fracture. International Journal for Numerical Methods in Engineering, 112(12), 1750–1776.

    Article  MathSciNet  Google Scholar 

  44. Rice, J. R. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35(2), 379–386.

    Article  Google Scholar 

  45. Yau, J. F., Wang, S. S., & Corten, H. T. (1980b). A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Journal of Applied Mechanics, 47(2), 335.

    Article  MATH  Google Scholar 

  46. Williams, M. L. (1956). On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics, 24, 109–114.

    MathSciNet  Google Scholar 

  47. Moës, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131–150.

    Article  MathSciNet  MATH  Google Scholar 

  48. Nuismer, R. J. (1975). An energy release rate criterion for mixed mode fracture. International Journal of Fracture, 11(2), 245–250. Apr.

    Article  Google Scholar 

  49. Francfort, G. A., & Marigo, J.-J. (1998). Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 46(8), 1319–1342.

    Article  MathSciNet  MATH  Google Scholar 

  50. Miehe, C., Hofacker, M., Schänzel, L.-M., & Aldakheel, F. (2015). Phase field modeling of fracture in multi-physics problems. Part II. Brittle-to-ductile failure mode transition and crack propagation in thermo-elastic-plastic solids. Computer Methods in Applied Mechanics and Engineering, 294, 486–522.

    Article  MathSciNet  MATH  Google Scholar 

  51. Korelc, J., & Wriggers, P. (2016). Automation of finite element methods. Springer. ISBN 978-3-319-39005-5. https://doi.org/10.1007/978-3-319-39005-5.

  52. Wriggers, P., Reddy, B. D., Rust, W., & Hudobivnik, B. (2017). Efficient virtual element formulations for compressible and incompressible finite deformations. Computational Mechanics, 60(2), 253–268.

    Article  MathSciNet  MATH  Google Scholar 

  53. Wriggers, P., & Hudobivnik, B. (2017). A low order virtual element formulation for finite elasto-plastic deformations. Computer Methods in Applied Mechanics and Engineering, 327, 459–477.

    Article  MathSciNet  Google Scholar 

  54. Flanagan, D., & Belytschko, T. (1981). A uniform strain hexahedron and quadrilateral with orthogonal hour-glass control. International Journal for Numerical Methods in Engineering, 17, 679–706.

    Article  MATH  Google Scholar 

  55. Belytschko, T., & Bindeman, L. P. (1991). Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Computer Methods in Applied Mechanics and Engineering, 88(3), 311–340.

    Article  MathSciNet  MATH  Google Scholar 

  56. Reese, S., Kuessner, M., & Reddy, B. D. (1999). A new stabilization technique to avoid hourglassing in finite elasticity. International Journal for Numerical Methods in Engineering, 44, 1617–1652.

    Article  MathSciNet  Google Scholar 

  57. Reese, S., & Wriggers, P. (2000). A new stabilization concept for finite elements in large deformation problems. International Journal for Numerical Methods in Engineering, 48, 79–110.

    Article  MATH  Google Scholar 

  58. Mueller-Hoeppe, D. S., Loehnert, S., & Wriggers, P. (2009). A finite deformation brick element with inhomogeneous mode enhancement. International Journal for Numerical Methods in Engineering, 78, 1164–1187.

    Article  MathSciNet  MATH  Google Scholar 

  59. Korelc, J., Solinc, U., & Wriggers, P. (2010). An improved EAS brick element for finite deformation. Computational Mechanics, 46, 641–659.

    Article  MATH  Google Scholar 

  60. Krysl, P. (2015). Mean-strain eight-node hexahedron with stabilization by energy sampling stabilization. International Journal for Numerical Methods in Engineering, 103, 437–449.

    Article  MathSciNet  MATH  Google Scholar 

  61. Miehe, C., Gürses, E., & Birkle, M. (2007). A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization. International Journal of Fracture, 145(4), 245–259.

    Article  MATH  Google Scholar 

  62. Erdogan, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85(4), 519–525.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hussein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussein, A., Wriggers, P., Hudobivnik, B., Aldakheel, F., Guidault, PA., Allix, O. (2020). Treatment of Brittle Fracture in Solids with the Virtual Element Method. In: Wriggers, P., Allix, O., Weißenfels, C. (eds) Virtual Design and Validation. Lecture Notes in Applied and Computational Mechanics, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-38156-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38156-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38155-4

  • Online ISBN: 978-3-030-38156-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics