Skip to main content

Electrical Conduction in Rocks

  • Chapter
  • First Online:
Natural Electromagnetic Fields in Pure and Applied Geophysics

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 617 Accesses

Abstract

In this chapter, we discuss the various ways that electrical currents are conducted through rocks, namely: (i) electronic conduction or conduction through metals; (ii) conduction through semiconductors; (iii) conduction through solid electrolytes; (iv) Ionic conduction or conduction through liquid electrolyte; and (v) conduction through dielectrics due to displacement current in mega- and gigahertz ranges. Also highlighted are dependences of electrical conductivity on: (i) porosity and permeability of rocks; (ii) conductivity of the pore fluid; (iii) size and shape of the mineral grains in the rocks; (iv) conductivity of the mineral grains; (v) temperature; (vi) pressure; (vii) frequency of the exciting current; (viii) ductility and degree of partial melt; (ix) oxygen fugacity; (x) volatiles; (xi) the Hall effect (xii); and the piezoelectric effect. Some experimental results are included, and Maxwell’s theory of electrical conduction is covered briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderssen, R.S., J.F. Devane, Gustfason, and D.E. Wincj. 1979. The qualitative character of the global electrical conductivity of the earth. Physics of the Earth and Planetary Interiors 20: 15–21.

    Google Scholar 

  • Brace, W.F., and A.S. Orange. 1968. Further studies of the effects of pressure on electrical resistivity of the rocks. Journal of Geophysical Research 73 (16): 5407–5420.

    Google Scholar 

  • Constable, S., and A.G. Duba. 1990. Electrical conductivity of olivine: a dunite and the mantle. Journal of Geophysical Research 95 (B5): 6967–6978.

    Google Scholar 

  • Constable, S., T.J. Shankland, and A.G. Duba. 1992. The electrical conductivity of an isotropic olivine mantle. Journal of Geophysical Research 97 (B3): 3397–3404.

    Google Scholar 

  • Duba, A.G., and C. Constable. 1993. The electrical conductivity of Lherzolite. Journal of Geophysical Research 98: 11885–11899.

    Google Scholar 

  • Duba, A.G., Schock,  E.L. Arnold, and T.J. Shankland. 1990. An apparatus for measurement of electrical conductivity to 1500 degrees at known oxygen fugacity. Geophysical Monograph Series, American Geophysical Union 56: 207–209.

    Google Scholar 

  • Duba, A.I., H.C. Heard, and R.N. Schock. 1974. Electrical conductivity of olivine at high pressure and under controlled oxygen fugacity. Journal of Geophysical Research 79 (11): 1667–1673.

    Google Scholar 

  • Dvorak, Z. 1973. Electrical conductivity of several samples of olivinites, peridotites and dunites as a function of pressure and temperature. Geophysics 38 (1): 14–24.

    Google Scholar 

  • Haak, V. 1980. Relation between electrical conductivity and petrological parameters of the crust and upper mantle. Surveys In Geophysics 4: 57–69.

    Google Scholar 

  • Haak, V., and R. Hutton. 1986. Electrical resistivity in continental lower crust. In The nature of the lower continental crust, No. 24, ed. J.B. Dawson, D.A. Carswell, J. Hall, and K.H. Wedepohl, 35–49. Geological Society Special Publication.

    Google Scholar 

  • Hermance, J.F. 1979. Electrical conductivity of materials containing partial melts. Geophysical Research Letters 6 (7): 613–616.

    Google Scholar 

  • Hirsch, L.M., and T.J. Shankland. 1993. Quantitative olivine defect model: Insights on electrical conduction, diffusion, and the role of Fe content. Geophysical Journal International 114: 21–35.

    Google Scholar 

  • Hirsch, L.M., T.J. Shankland, and A.G. Duba. 1993. Electrical conduction and polaron mobility in Fe-bearing olivine. Geophysical Journal International 114: 36–44.

    Google Scholar 

  • Hyndman, R.D. 1988. Dipping seismic reflectors, electrically conductive zone and trapped water in the crust over a subducting plates. Journal of Geophysical Research 93 (B11): 13391–13404.

    Google Scholar 

  • Jackson, P.D., D. Taylor Smith, and P.N. Stanford. 1978. Resistivity-porosity-particle shape relationships for marine sands. Geophysics 43 (6): 1250–1268.

    Google Scholar 

  • Jones, A.G. 1982. Electrical conductivity of the continental lower crust, Chapter 3, geological survey of Canada contribution no. 17492.

    Google Scholar 

  • Karato, S. 1990. The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347: 272–273.

    Google Scholar 

  • Kariya, K.A., and T.J. Shankland. 1983. Electrical conductivity of dry lower crustal rocks. Geophysics 48 (1): 52–61.

    Google Scholar 

  • Keller, G.V., and F.C. Frischknecht. 1966. Electrical methods of geophysical prospecting. New York: Pergamon Press.

    Google Scholar 

  • Lastovickova, M. 1981. Electrical conductivity of garnets and garnet bearing rocks. Gerlands Beitrage zur Geophysik 90 (6): 529–536.

    Google Scholar 

  • Lastovickova, M. 1983. Laboratory measurements of electrical conductivity of rocks and minerals. Geophysical Surveys 6: 201–213.

    Google Scholar 

  • Lastovickova, M. 1987a. Electrical conductivity of some rocks from the Indian subcontinent, Studio. Geoph et Geodetika 31: 60–72.

    Google Scholar 

  • Lastovickova, M. 1987b. Electrical conductivity of some minerals at high temperature and for an extended period. Physics of the Earth and Planetary Interiors 45: 204–208.

    Google Scholar 

  • Madden, T.R., G.A. Latorraca, and S.K. Park. 1993. Electrical conductivity variations around the Palmdale section of the San Andreas fault zone. Journal of Geophysical Research 98 (B1): 795–808.

    Google Scholar 

  • Maxwell, J.C. 1892. A treatise on electricity and magnetism, 3rd ed., vol. 1, Chapter 9. Oxford, UK: Clarendon.

    Google Scholar 

  • Mitchell, A.J., and Landisman. 1971. Electrical and seismic properties of the Earth crust in the south western great plains of the USA. Geophysics 36 (2): 363–381.

    Google Scholar 

  • Nitsan, U., and T.J. Shankland. 1976. Optical properties and electronic structure of mantle silicates. Geophysical Journal of the Royal Astronomical Society 45: 59–87.

    Google Scholar 

  • Olhoeft, G.R. 1977. Electrical conductivity of the water saturated basalt, preliminary results, USGS Technical Report, Denver, Colorado 80225.

    Google Scholar 

  • Olhoeft, G.R., A.L. Frissilo, and D.W. Strangway. 1974. Electrical properties of lunar soil sample 15301, 38. Journal of Geophysical Research 79 (11): 1599–1604.

    Google Scholar 

  • Rai, C.S., and M.H. Manghnani. 1978. Electrical conductivity of ultramafic rocks to 1820 Kelvin. Physics of the Earth and Planetary Interiors 17: 6–13.

    Google Scholar 

  • Roy, K.K. 2007. Potential theory in applied geophysics. Germany: Springer.

    Google Scholar 

  • Schock, R.N., A.G. Duba, and T.J. Shankland. 1989. Electrical conduction in olivine. Journal of Geophysical Research 94 (B5): 5829–5839.

    Google Scholar 

  • Schwarz, G. 1990. Electrical conductivity of the Earth’s crust and upper mantle. Surveys In Geophysics 11: 133–161.

    Google Scholar 

  • Shankland, T.J. 1975. Electrical conduction in rocks and minerals: parameters for interpretation. Physics of the Earth and Planetary Interiors 10: 209–219.

    Google Scholar 

  • Shankland, T.J. 1981. Electrical conduction in mantle materials. Evolution of the Earth, Geodynamics Series 5: 256–263.

    Google Scholar 

  • Shankland, T.J., and M.E. Ander. 1983. Electrical conductivity, temperature and fluids in the lower crust. Journal of Geophysical Research 88 (B11): 9475–9484.

    Google Scholar 

  • Shankland, T.J., and A.G. Duba. 1990. Standard electrical conductivity of isotropic and homogenous olivine in the temperature range of 1200 degree to 1500 degree centigrade. Geophysical Journal International 103: 25–31.

    Google Scholar 

  • Shankland, T.J., and H.S. Waff. 1974. Conductivity in fluid bearing rocks. Journal of Geophysical Research 79 (32): 4863–4868.

    Google Scholar 

  • Shankland, T.J., and H.S. Waff. 1977. Partial melting and electrical conductivity anomalies in the upper mantle. Journal of Geophysical Research 83 (33): 5409–5417.

    Google Scholar 

  • Shankland, T.J., O’Connell, and H.S. Waff. 1981. Geophysical constraints on partial melt in the Upper mantle. Reviews of Geophysics and Space Physics 19 (3): 394–406.

    Google Scholar 

  • Shankland, T.J., J. Peyronneau, and J.P. Poirier. 1993. Electrical conductivity of Earth’s lower mantle. Nature 366: 453–455.

    Google Scholar 

  • Shur, M. 2004. Physics of semiconductor devices. New Delhi: Prentice Hall of India.

    Google Scholar 

  • Stratton, J.A. 1941. Electromagnetic field theory. New York: McGraw Hill.

    Google Scholar 

  • Tozer, D.C. 1979. The interpretation of upper mantle electrical conductivities. Tectonophysics 56: 147–163.

    Google Scholar 

  • Xu, Yousheng, Brent T. Poe, T.J. Shankland, and D.C. Rubie. 1998a. Electrical conductivity of olivine, Wadsleyite and Rinwoodite under upper mantle conditions. Science 280: 1415–1418.

    Google Scholar 

  • Xu, Yousheng, C. Mc Cammon, B.T. Poe. 1998b. The Effect of alumina on the electrical conductivity of silicate perovskite. Science 282: 922–924 (Reprint Series of the American Association for the Advancement of Science).

    Google Scholar 

  • Zhdanov, M.S., and G.V. Keller. 1994. The geoelectrical methods in geophysical exploration. Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyan Kumar Roy .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, K.K. (2020). Electrical Conduction in Rocks. In: Natural Electromagnetic Fields in Pure and Applied Geophysics. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-38097-7_2

Download citation

Publish with us

Policies and ethics