Skip to main content

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 637 Accesses

Abstract

In this chapter, a few topics of inversion generally used for interpreting geoelectrical data are discussed briefly. The topics included are: (i) the general introduction on the subject; (ii) Tikhnov’s regularization; (iii) very brief touch on singular value decomposition, least squares inversion, weighted least squares and weighted ridge regression; (iv) Backus–Gilbert inversion; (v) 2D Occam inversion; (vi) REBOCC inversion; (vii) rapid relaxation inversion; (viii) method of steepest descent; (ix) conjugate gradient minimisation; (x) joint inversion; and (xi) appraisal. Topics included in joint inversion are combinations of: (i) magnetotelluric and DC resistivity; (ii) DC resistivity and induced polarization; and (iii) magnetotellurics and seismics. One field example of use of multiple inversion tools for 1D inversion of the same set of data is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Backus, G., and F. Gilbert. 1967. Numerical application of a formalism for geophysical inverse problem. Geophysical Journal 33: 247–276.

    Google Scholar 

  • Backus, G., and F. Gilbert. 1968. The resolving power of gross earth data. Geophysical Journal of the Royal Astronomical Society 16: 169–205.

    Google Scholar 

  • Backus, G., and F. Gilbert. 1970. Uniqueness in the inversion of inaccurate gross earth data. Philosophical Transactions of the Royal Society 266A: 123–192.

    Google Scholar 

  • Benech, C., A. Tabbagh, and G. Desvignes. 2002. Joint inversion of EM and magnetic data for near surface studies. Geophysics, 67 (6): 1729–1739.

    Google Scholar 

  • Bhattacharyya, P.K., and H.P. Patra. 1968. Direct current geoelectric sounding. Elsevier, Amsterdam: Principles and Interpretation.

    Google Scholar 

  • Chave, A.D. 1984. Fréchet derivatives of electromagnetic inversion. Journal of Geophysical Research, 3373–3379.

    Google Scholar 

  • Constable, S.C., R.L. Parker, and C.G. Constable. 1987. Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52: 289–300.

    Google Scholar 

  • Davis, L.D. 1991. Hand book of genetic algorithm. Van Nostrand Reinhold.

    Google Scholar 

  • deGroot-Hedlin, C., and S. Constable. 1990. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55 (12): 1613–1624.

    Google Scholar 

  • deGroot-Hedlin, C., and S. Constable. 2004. Inversion of magnetotelluric data for 2D structure with sharp resistivity contrasts. Geophysics, 69 (1): 78–86.

    Google Scholar 

  • Dieft, P., and X. Xhou. 1993. A steepest descent method for oscillatory Riemann Hilbert problems. The Annals of Mathematics 37 (2): 298–368.

    Google Scholar 

  • Dobroka, M., M. Kis, and E. Turai. 2001. Approximate joint inversion of MT and DC geoelectric data in case of 2-D structures. In EAEG 63rd conference and technical exhibition, Amsterdam, The Netherlands.

    Google Scholar 

  • Dosso, S.E., and D.W. Oldenburg. 1989. Linear and non-linear appraisal using extremal models of bounded variation. Geophysical Journal International 99: 483–495.

    Google Scholar 

  • Dosso, S.E., and D.W. Oldenburg. 1991. Magnetotelluric appraisal using simulated annealing. Geophysical Journal International 106: 379–385.

    Google Scholar 

  • Draper, N.R., and J. Smith. 1968. Applied regression analysis. Newyork: John Wiley and Sons Inc.

    Google Scholar 

  • Gallardo, L.A., and M.A. Meju. 2003. Characterization of heterogeneous near surface material by joint 2D inversion of DC resistivity and seismic data. Geophysical Research Letters 30: 1658–1661.

    Google Scholar 

  • Gallardo, L.A, and M.A. Meju. 2004. Joint 2D resistivity and seismic inversion, EM INDIA 2004 MTDIW. Advances in integrated geoelectromagnetic and seismic interpretation (joint two dimensional resistivity and Seismic travel time inversion with cross gradient constraints). Journal of Geophysical Research 109 (B3): B03311.

    Google Scholar 

  • Gallardo-Delgado, L.A., M.A. Prez Flores, and E. Gomez-Trevino. 2003. A varsatile algorithm for joint 3D inversion of gravity and magnetic data. Geophysics 68 (3): 949–959.

    Google Scholar 

  • Ghosh, D.P. 1970. The application of linear filter theory to the direct application of geoelectrical resistivity measurements, monograph. Gravenhage, The Netherlands: Drukker, J.H., Pasmans

    Google Scholar 

  • Goldberg, D.E. 1989. Genetic algorithm in search, optimization and machine learning. USA, MA: Addison Wesley Reading.

    Google Scholar 

  • Hering, A., R. Misiek, A. Gyulai, T. Ormos, M. Dobroka, and L. Dresen. 1993. A joint Inversion algorithm to process geoelectric and surface wave seismic data Part I: basic ideas. Geophysical Prospecting, 137–156.

    Google Scholar 

  • Hestenes, M., and E. Stiefel. 1952. Methods of conjugate gradient for solving linear systems. Journal of Research of the National Bureau of Standards 49 (6): 409–435.

    Google Scholar 

  • Holland, J.H. 1975. Adaptation in natural and artificial systems. USA: University of Michigan Press.

    Google Scholar 

  • Hopfield, J.J., and D.W. Tank. 1986. Computing with neural circuits. A Model Science 233: 625–633.

    Google Scholar 

  • Ingber, L. 1989. Very fast simulated annealing (VFSA). Mathematical Computation and Modeling 12 (8): 967–993.

    Google Scholar 

  • Ingber, L. 1993. Simulated annealing, practice versus theory, statistics and computing.

    Google Scholar 

  • Inman, J.R. 1975. Resistivity inversion with ridge regression. Geophysics 40 (5): 798–817.

    Google Scholar 

  • Inman, J.R., J. Ryu, and S.H. Ward. 1973. Resistivity inversion: Geophysics 38 (6): 1088–1108.

    Google Scholar 

  • Jackson, D.D. 1972. Interpretation of inaccurate, insufficient, and inconsistent data. Geophysical Journal of the Royal Astronomical Society 28: 97–109.

    Google Scholar 

  • Jackson, D.D. 1973. Marginal solutions to quasilinear inverse problems in geophysics. Geophysical Journal of the Royal Astronomical Society 35: 121–136.

    Google Scholar 

  • Jackson, D.D. 1979. The use of a priori data to resolve non-uniqueness in linear inversion. Geophysical Journal of the Royal Astronomical Society 57: 137–157.

    Google Scholar 

  • Jupp, D.L.B., and K. Vozoff. 1975. Stable iterative methods for the inversion of geophysical data. Geophysical Journal of the Royal Astronomical Society 42: 957–976.

    Google Scholar 

  • Jupp, D.L.B., and K. Vozoff. 1977a. Two-dimensional magnetotelluric inversion. Geophysical Journal of the Royal Astronomical Society 50: 333–352.

    Google Scholar 

  • Jupp, D.L.B., and K. Vozoff. 1977b. Resolving anisotropy in layered media by joint inversion. Geophysical Prospecting 25: 460–470.

    Google Scholar 

  • Keller, G.V., and F.C. Frischknecht. 1966. Electrical methods in geophysical prospecting. Oxford: Pergamon Press.

    Google Scholar 

  • Koefoed, O. 1979. Geosounding principles–1: resistivity sounding measurements. Amsterdam: Elsevier.

    Google Scholar 

  • Larsen, J.C. 1981. A new technique for layered earth magnetotelluric inversion. Geophysics 46 (9): 1247–1257.

    Google Scholar 

  • Lanczos, C. 1941. Linear differential operator. Van Nostrand and Co. London.

    Google Scholar 

  • Li, Y., and D.W. Oldenburg. 2000. Joint Inversion of surface and three component bore hole magnetic data. Geophysics 65: 540–552.

    Google Scholar 

  • Mackie, R.L., and T.R. Madden. 1993a. Conjugate direction relaxation solutions for 3-D magnetotelluric modeling. Geophysics, 58 (7): 1052–1057.

    Google Scholar 

  • Mackie, R. L., and T.R. Madden. 1993b. Three-dimensional magnetotelluric inversion using conjugate gradients. Geophysical Journal International, 115: 215–229.

    Google Scholar 

  • Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11: 431–441.

    Google Scholar 

  • Marquardt, D.W. 1970. Generalized inverse, ridge regression, based linear estimation and non-linear estimation. Technometrics 12 (3): 591–612.

    Google Scholar 

  • Menke, W., 1984. Geophysical data analysis discrete inverse theory. Academic Press.

    Google Scholar 

  • Nabighian, M.N., and C.L. Elliott. 1976. Negative induced polarization effects from layered media. Geophysics 41: 1236–1255.

    Google Scholar 

  • Oldenburg, D.W. 1979. One-dimensional inversion of natural source magnetotelluric observations. Geophysics 44: 1218–1244.

    Google Scholar 

  • Oldenburg, D.W. 1990. Inversion of electromagnetic data: an overview of new techniques. Surveys In Geophysics 11: 231–270.

    Google Scholar 

  • Oldenburg, D.W., and R.G. Ellis. 1991. Inversion of geophysical data using an approximate inverse mapping. Geophysical Journal International, 105: 325–353.

    Google Scholar 

  • Oldenburg, D.W., P.R. McGillivray, and R.G. Ellis. 1993. Generalised subspace methods for large scale inverse problems. Geophysical Journal International, 114: 12–20.

    Google Scholar 

  • Parker, R.L. 1970. The inverse problems of electrical conductivity of the mantle. Geophysical Journal of the Royal Astronomical Society 22: 121–138.

    Google Scholar 

  • Parker, R.L. 1972. Inverse theory with grossly inadequate data. Geophysical Journal of the Royal Astronomical Society 29: 123–138.

    Google Scholar 

  • Parker, R.L. 1977a. Understanding inverse theory. Annual Review of Earth and Planetary Sciences 5: 35–64.

    Google Scholar 

  • Parker, R.L. 1977b. The Fréchet derivative for the one dimensional electromagnetic induction problem. Geophysical Journal of the Royal Astronomical Society 49: 543–547.

    Google Scholar 

  • Parker, R.L. 1980. The inverse problem of electromagnetic induction: existence and construction of solutions based upon incomplete data. Journal Geophysical Research 85: 4421–4425.

    Google Scholar 

  • Parker, R.L. 1983. The magnetotelluric inverse problems. Surveys In Geophysics 6: 5–25.

    Google Scholar 

  • Parker, R.L. 1984. The inverse problem of resistivity sounding. Geophysics 49 (12): 2143–2158.

    Google Scholar 

  • Parker, R.L. 1994. Geophysical inverse theory. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Pedersen, L.B. 1979. Constrained inversion of potential field data. Geophysical Prospecting 27: 726–748.

    Google Scholar 

  • Pedersen, L.B., and M. Gharibi. 2000. Automatic 1D inversion of magnetotelluric data: finding the simplest possible model that fits the data. Geophysics 65 (3): 773–782.

    Google Scholar 

  • Press, F. 1968. Earth models obtained by Monte Carlo inversion. Journal of Geophysical Research 73: 5223–5234.

    Google Scholar 

  • Raiche, A.P., D.l.B. Jupp, H. Rutter, and K. Vozoff. 1985. The joint use of coincident loop transient electromagnetics and Schlumberger sounding to resolve the layered structures. Geophysics 50: 1618–1627.

    Google Scholar 

  • Rijo, L. 1977. Modelling of electric and electromagnetic data. Ph.D. thesis Unpublished, University of Utah, Salt Lake City, USA.

    Google Scholar 

  • Rodi, W.L. 1976. A technique for improving the accuracy of finite element solution for magnetotelluric data. Geophysical Journal of the Royal Astronomical Society 44: 483–506.

    Google Scholar 

  • Rodi, W., and R.L. Mackie. 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66 (1): 174–187.

    Google Scholar 

  • Roy, A. 1974. Resistivity signal partition in layered media. Geophysics 39 (2): 190–204.

    Google Scholar 

  • Roy, K.K. 2007. Potential theory in applied geophysics. Heidelberg: Springer.

    Google Scholar 

  • Roy, K.K. 2014. Geophysical signatures for detection of fresh eater and saline water zones, in ‘Recent Trends in Modelling of Environmental Contaminants’, ed. D. Sengupta. New Delhi, India: Springer.

    Google Scholar 

  • Roy, K.K., and O.P. Rathi. 1988. Resistivity inversion using resistivity signal partitions. Gerlands Beitrage Zur Geophysik Leipzig 97 (6)S: 472–494.

    Google Scholar 

  • Roy, K.K., and O.P. Rathi. 1988. A new approach for inversion of resistivity and induced polarization sounding data in “Frontiers in Exploration Geophysics”, ed. B.B. Bhattacharyya, 269–291. Oxford: I.B.H.

    Google Scholar 

  • Roy, K.K., J. Bhattacharyya, K.K. Mukherjee, and Mahatsente. 1995. An interactive inversion of resistivity and induced polarization sounding for location of saline water pockets. Exploration Geophysics (Australia), 25: 207–211.

    Google Scholar 

  • Sasaki, Y. 1989. Two dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics 54 (2): 254–262.

    Google Scholar 

  • Scales, J.A., M.L. Smith, and S. Treitel. 2001. Introduction to geophysical inverse theory. Golden, Colorado: Sameezdat Press.

    Google Scholar 

  • Seigel, H.O. 1959. Mathematical formulation and type curves for induced polarization. Geophysics 24: 547–565.

    Google Scholar 

  • Sen, M.K., and P.L. Stoffa. 1994. Global optimisation methods for geophysical inversion. Amsterdam: Elsevier.

    Google Scholar 

  • Sharma, S.P., E. Pracser, and K.K. Roy. 2005. Joint inversion of seismic refraction and magnetotelluric data for resolving deeper: subsurface structure. Acta Geodaetica et Geophysica, Hungarica 40 (2): 241–258.

    Google Scholar 

  • Siripunvaraporn, W., and G. Egbert. 2000. An efficient data-subspace inversion method for 2-D magnetotelluric data. Geophysics, 65 (3): 791–803.

    Google Scholar 

  • Smith, J.T., and J.R. Booker. 1988. Magnetotelluric inversion for minimum structure. Geophysics 53 (12): 1565–1576.

    Google Scholar 

  • Smith, J.T., and J.R. Booker. 1991. Rapid inversion of two- and three-dimensional magnetotelluric data. Journal of Geophysical Research 96 (B3): 3905–3922.

    Google Scholar 

  • Smith, N.C, and K. Vozoff. 1984. Two dimensional DC resistivity inversion for dipole–dipole data. IEEE Transactions on Geoscience and Remote Sensing, GE- 22 (1): 21–28.

    Google Scholar 

  • Tarantola, A. 1987. Inverse problem theory: methods for data fitting and model parameter estimation. Amsterdam: Elsevier.

    Google Scholar 

  • Telford, W.M., L.P. Geldart, R.E. Sheriff, and D.A. Keys. 1981. Applied geophysics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tikhnov, A.N., and V.Y. Arsenin. 1977. Solution of ill-posed problems (Translated by Fritz John), New York University, Courant Institute of Mathematical Sciences. New York: Wiley.

    Google Scholar 

  • Tikhnov, A.N., A.V. Goncharsky, V.V. Stepanov, and A.G. Yagola. 1995. Numerical methods for solution of ill-posed problems. Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  • Tripp, A.C., G.W. Hohmann, and C.M. Swift Jr. 1984. Two dimensional resistivity inversion. Geophysics 49 (10): 1708–1717.

    Google Scholar 

  • Vozoff, K., and D.L.B. Jupp. 1975. Joint inversion of geophysical data. Geophysical Journal of the Royal Astronomical Society 42: 977–991.

    Google Scholar 

  • Wannamaker, P.E. 1991. Advances in three dimensional magneto-telluric modeling using integral equations. Geophysics 56 (11): 1716–1728.

    Google Scholar 

  • Wannamaker, P.E., J.A. Stodt, and L. Rijo. 1987. A stable finite element solution for two dimensional magnetotelluric modelling. Geophysical Journal of the Royal Astronomical Society 88: 277–296.

    Google Scholar 

  • Weidelt, P. 1975. Inversion of two dimensional conductivity structures. Physics of the Earth and Planetary Interiors 10: 282–291.

    Google Scholar 

  • Zhdanov, M.S. 2002. Geophysical inverse theory and regularisarion problems. Amsterdam: Elsevier.

    Google Scholar 

  • Zhdanov, M.S., and G.V. Keller. 1994. The geoelectrical methods in geophysical exploration, 871p. Amsterdam: Elsevier Scientific Publishing Company.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyan Kumar Roy .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, K.K. (2020). Inversion of Geophysical Data. In: Natural Electromagnetic Fields in Pure and Applied Geophysics. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-38097-7_10

Download citation

Publish with us

Policies and ethics