Skip to main content

A New Generic Model for Adaptive Shock Absorbers

  • Conference paper
  • First Online:
Advances in Dynamics of Vehicles on Roads and Tracks (IAVSD 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 218 Accesses

Abstract

Adaptive shock absorbers improve the ride quality by changing the damping characteristic depending on road excitation. An adjustable bypass valve allows to switch between different force characteristics. This paper introduces a new generic damper model which uses a modular damping function (MDF) to adapt the resulting force output through position-, stroke- and frequency-dependent adjustments. The piston motion is used to determine the shock absorber’s basic force and the state-dependent force difference, which results from the adjustable bypass. In contrast to established modeling approaches that are used for digital performance predictions in the early stage of the development process, MDF includes both the maximum and the minimum force characteristic, thus allowing the implementation of adaptive shock absorbers. Few additional parameters are required to specify both hysteresis and the adjustable bypass effect. In later stages, measurement data can be used to fit the model quality to the increasing maturity level of the described shock absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barethiye, V., Pohit, G., Mitra, A.: A combined nonlinear and hysteresis model of shock absorber for quarter car simulation on the basis of experimental data. Eng. Sci. Technol. Int. J. 20(6), 1610–1622 (2017)

    Google Scholar 

  2. Bedük, M.D., Çalışkan, K., Henze, R., Küçükay, F.: Advanced parameter analysis for damper influence on ride dynamics. J. Vib. Control 24(8), 1393–1411 (2018)

    Article  Google Scholar 

  3. Boggs, C., Ahmadian, M., Southward, S.: Efficient empirical modelling of a high-performance shock absorber for vehicle dynamics studies. Veh. Syst. Dyn. 48(4), 481–505 (2010)

    Article  Google Scholar 

  4. Dixon, J.C.: The Shock Absorber Handbook, 2nd edn. Wiley, Chichester (2007)

    Book  Google Scholar 

  5. Dragon, L., Faul, R., Grossman, T., Colditz, J.: Objektive und subjektive Abstimmung der Fahrkultur mittels digitaler Prototypen unter Einbeziehung von Simulatoren (Objective and subjective tuning of the driving culture with digital prototypes using simulators). In: 3. Nationale Tagung Humanschwingungen, pp. 181 – 196. VDI-Verlag, Dresden (2007)

    Google Scholar 

  6. Duym, S., Stiens, R., Reybrouck, K.: Evaluation of shock absorber models. Veh. Syst. Dyn. 27(2), 109–127 (1997)

    Article  Google Scholar 

  7. Groß, A., Stretz, A., Ersoy, M., Eulenbach, H.D., Gold, H., Sonnenburg, R.: Bestandteile der Dämpfung (Damping components). In: Ersoy, M., Gies, S. (eds.) Fahrwerkhandbuch (Suspension handbook), pp. 487–540. Springer Fachmedien Wiesbaden, Wiesbaden (2017)

    Chapter  Google Scholar 

  8. Lee, C.T., Moon, B.Y.: Study on the damping performance characteristics analysis of shock absorber of vehicle by considering fluid force. J. Mech. Sci. Technol. 19(2), 520–528 (2005)

    Article  Google Scholar 

  9. Pracny, V., Meywerk, M., Lion, A.: Full vehicle simulation using thermomechanically coupled hybrid neural network shock absorber model. Veh. Syst. Dyn. 46(3), 229–238 (2008)

    Article  Google Scholar 

  10. Reybrouck, K.: A non linear parametric model of an automotive shock absorber. In: SAE Technical Paper, 940869. SAE International (1994)

    Google Scholar 

  11. Segel, L., Lang, H.H.: The mechanics of automotive hydraulic dampers at high stroking frequencies. Veh. Syst. Dyn. 10(2–3), 82–85 (1981)

    Article  Google Scholar 

  12. Sorniotti, A., D’Alfio, N., Morgando, A.: Shock absorber modeling and experimental testing. In: SAE Technical Paper. SAE International (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Kunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kunz, N., Müller, S. (2020). A New Generic Model for Adaptive Shock Absorbers. In: Klomp, M., Bruzelius, F., Nielsen, J., Hillemyr, A. (eds) Advances in Dynamics of Vehicles on Roads and Tracks. IAVSD 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-38077-9_207

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38077-9_207

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38076-2

  • Online ISBN: 978-3-030-38077-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics