Skip to main content

Search-Based Motion Planning for Performance Autonomous Driving

  • 238 Accesses

Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Driving on the limits of vehicle dynamics requires predictive planning of future vehicle states. In this work, a search-based motion planning is used to generate suitable reference trajectories of dynamic vehicle states with the goal to achieve the minimum lap time on slippery roads. The search-based approach enables to explicitly consider a nonlinear vehicle dynamics model as well as constraints on states and inputs so that even challenging scenarios can be achieved in a safe and optimal way. The algorithm performance is evaluated in simulated driving on a track with segments of different curvatures. Our code is available at https://git.io/JenvB.

Keywords

  • Autonomous vehicles
  • Trail-braking
  • Drifting
  • Motion planning

Z. Ajanovic and E. Regolin—Equal contributions. Ajanovic focused on algorithmic while Regolin on vehicle dynamics part.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-38077-9_134
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   469.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-38077-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   599.99
Price excludes VAT (USA)
Hardcover Book
USD   599.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Liniger, A., Domahidi, A., Morari, M.: Optimization-based autonomous racing of 1:43 scale RC cars. Optimal Control Appl. Methods 36(5), 628–647 (2015)

    MathSciNet  CrossRef  Google Scholar 

  2. Liniger, A., Lygeros, J.: A noncooperative game approach to autonomous racing. IEEE Trans. Control Syst. Technol. 1–14 (2019)

    Google Scholar 

  3. Kolter, J.Z., Plagemann, C., Jackson, D.T., Ng, A.Y., Thrun, S.: A probabilistic approach to mixed open-loop and closed-loop control, with application to extreme autonomous driving. In: 2010 IEEE International Conference on Robotics and Automation, pp. 839–845. IEEE (2010)

    Google Scholar 

  4. Velenis, E., Tsiotras, P., Lu, J.: Modeling aggressive maneuvers on loose surfaces: the cases of trail-braking and pendulum-turn. In: ECC, pp. 1233–1240. IEEE (2007)

    Google Scholar 

  5. Velenis, E., Tsiotras, P., Lu, J.: Optimality properties and driver input parameterization for trail-braking cornering. Eur. J. Control 14(4), 308–320 (2008)

    CrossRef  Google Scholar 

  6. Tavernini, D., Massaro, M., Velenis, E., Katzourakis, D.I., Lot, R.: Minimum time cornering: the effect of road surface and car transmission layout. Veh. Syst. Dyn. 51(10), 1533–1547 (2013)

    CrossRef  Google Scholar 

  7. You, C., Tsiotras, P.: Real-time trail-braking maneuver generation for off-road vehicle racing. In: 2018 Annual American Control Conference (ACC), pp. 4751–4756. IEEE (2018)

    Google Scholar 

  8. Zhang, F., Gonzales, J., Li, S.E., Borrelli, F., Li, K.: Drift control for cornering maneuver of autonomous vehicles. Mechatronics 54, 167–174 (2018)

    CrossRef  Google Scholar 

  9. Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J.M., Boots, B., Theodorou, E.A.: Information theoretic MPC for model-based reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1714–1721, May 2017

    Google Scholar 

  10. Ajanovic, Z., Lacevic, B., Shyrokau, B., Stolz, M., Horn, M.: Search-based optimal motion planning for automated driving. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4523–4530. IEEE (2018)

    Google Scholar 

  11. Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., How, J.: Motion planning in complex environments using closed-loop prediction. In: AIAA Guidance, Navigation and Control Conference and Exhibit, p. 7166 (2008)

    Google Scholar 

  12. Regolin, E., Zambelli, M., Ferrara, A.: A multi-rate ISM approach for robust vehicle stability control during cornering. IFAC-PapersOnLine 51(9), 249–254 (2018)

    CrossRef  Google Scholar 

  13. Regolin, E., Vazquez, A.G.A., Zambelli, M., Victorino, A., Charara, A., Ferrara, A.: A sliding mode virtual sensor for wheel forces estimation with accuracy enhancement via EKF. IEEE Trans. Veh. Technol. 68(4), 3457–3471 (2019)

    CrossRef  Google Scholar 

  14. Genta, G.: Motor Vehicle Dynamics: Modeling and Simulation, vol. 43. World Scientific, Singapore (1997)

    CrossRef  Google Scholar 

  15. Velenis, E., Katzourakis, D., Frazzoli, E., Tsiotras, P., Happee, R.: Steady-state drifting stabilization of RWD vehicles. Control Eng. Pract. 19(11), 1363–1376 (2011)

    CrossRef  Google Scholar 

  16. Pacejka, H.: Tire and Vehicle Dynamics. Butterworth-Heinemann, Oxford (2012)

    Google Scholar 

  17. Werling, M., Kammel, S., Ziegler, J., Gröll, L.: Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. Int. J. Robot. Res. 31(3), 346–359 (2012)

    CrossRef  Google Scholar 

  18. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    CrossRef  Google Scholar 

  19. Montemerlo, M., et al.: Junior: the stanford entry in the urban challenge. J. Field Robot. 25(9), 569–597 (2008)

    CrossRef  Google Scholar 

  20. Ziegler, J., Bender, P., Dang, T., Stiller, C.: Trajectory planning for Bertha — a local, continuous method. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, 8–11 June 2014, pp. 450–457. IEEE (2014)

    Google Scholar 

Download references

Acknowledgment

The project leading to this study has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675999, ITEAM project. VIRTUAL VEHICLE Research Center is funded within the COMET - Competence Centers for Excellent Technologies - programme by the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Federal Ministry of Science, Research and Economy (BMWFW), the Austrian Research Promotion Agency (FFG), the province of Styria and the Styrian Business Promotion Agency (SFG). The COMET programme is administrated by FFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatan Ajanovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ajanovic, Z., Regolin, E., Stettinger, G., Horn, M., Ferrara, A. (2020). Search-Based Motion Planning for Performance Autonomous Driving. In: Klomp, M., Bruzelius, F., Nielsen, J., Hillemyr, A. (eds) Advances in Dynamics of Vehicles on Roads and Tracks. IAVSD 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-38077-9_134

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38077-9_134

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38076-2

  • Online ISBN: 978-3-030-38077-9

  • eBook Packages: EngineeringEngineering (R0)