Skip to main content
Book cover

Myosins pp 41–59Cite as

The Structure of Acto-Myosin

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1239))

Abstract

After several decades studying different acto-myosin complexes at lower and intermediate resolution – limited by the electron microscope instrumentation available then – recent advances in imaging technology have been crucial for obtaining a number of excellent high-resolution 3D reconstructions from cryo electron microscopy. The resolution level reached now is about 3–4 Å, which allows unambiguous model building of filamentous actin on its own as well as that of actin filaments decorated with strongly bound myosin variants. The interface between actin and the myosin motor domain can now be described in detail, and the function of parts of the interface (such as, e.g., the cardiomyopathy loop) can be understood in a mechanistical way. Most recently, reconstructions of actin filaments decorated with different myosins, which show a strongly bound acto-myosin complex also in the presence of the nucleotide ADP, have become available. The comparison of these structures with the nucleotide-free Rigor state provide the first mechanistic description of force sensing. An open question is still the initial interaction of the motor domain of myosin with the actin filament. Such weakly interacting states have so far not been the subject of microscopical studies, even though high-resolution structures would be needed to shed light on the initial steps of phosphate release and power stroke initiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Behrmann E, Müller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S (2012) Structure of the rigor actin-tropomyosin-myosin complex. Cell 150:327–338

    Article  CAS  Google Scholar 

  • Bradshaw M, Paul DM (2019) After the revolution: how is Cryo-EM contributing to muscle research? J Muscle Res Cell M 40:93–98

    Article  CAS  Google Scholar 

  • Campbell MG, Cheng A, Brilot AF, Moeller A, Lyumkis D, Veesler D, Pan J, Harrison SC, Potter CS, Carragher B, Grigorieff N (2012) Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20:1823–1828. https://doi.org/10.1016/j.str.2012.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou SZ, Pollard TD (2019) Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides. Proc Natl Acad Sci U S A 116:4265–4274

    Article  CAS  Google Scholar 

  • Clough RN, Moldovan G, Kirkland A (2014) Direct detectors for electron microscopy. J Phys Conf Ser 522:012046. https://doi.org/10.1088/1742-6596/522/1/012046

    Article  CAS  Google Scholar 

  • Coureux PD, Sweeney HL, Houdusse A (2004) Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J 23:4527–4537

    Article  CAS  Google Scholar 

  • Cressey D, Callaway E (2017) Cryo-electron microscopy wins chemistry Nobel. Nature 550:167. https://doi.org/10.1038/nature.2017.22738

    Article  PubMed  Google Scholar 

  • Dawson JF, Sablin EP, Spudich JA, Fletterick RJ (2003) Structure of an F-actin trimer disrupted by gelsolin and implications for the mechanism of severing. J Biol Chem 278:1229–1238

    Article  CAS  Google Scholar 

  • Egelman EH (2007) The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. J Struct Biol 157:83–94

    Article  CAS  Google Scholar 

  • Flicker PF, Milligan RA, Applegate D (1991) Cryo-electron microscopy of S1-decorated actin filaments. Adv Biophys 27:185–196

    Article  CAS  Google Scholar 

  • Fujii T, Namba K (2017) Structure of actomyosin rigour complex at 5.2 Å resolution and insights into the ATPase cycle mechanism. Nat Commun 8:13969. https://doi.org/10.1038/ncomms13969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Iwane AH, Yanagida T, Namba K (2010) Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467:724–728. https://doi.org/10.1038/nature09372

    Article  CAS  PubMed  Google Scholar 

  • Galkin VE, Orlova A, Kudryashov DS, Solodukhin A, Reisler E, Schröder GF, Egelman EH (2011) Remodeling of actin filaments by ADF/cofilin proteins. Proc Natl Acad Sci U S A 108:20568–20572. https://doi.org/10.1073/pnas.1110109108

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurel PS, Kim LY, Ruijgrok PV, Omabegho T, Bryant Z, Alushin GM (2017) Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity. Elife 6:e31125. https://doi.org/10.7554/eLife.31125

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes KC, Angert I, Kull FJ, Jahn W, Schröder RR (2003) Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425:423–427

    Article  CAS  Google Scholar 

  • Houdusse A, Szent-Gyorgyi AG, Cohen C (2000) Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A 97:11238–11243

    Article  CAS  Google Scholar 

  • Huehn A, Cao W, Elam WA, Liu X, De La Cruz EM, Sindelar CV (2018) The actin filament twist changes abruptly at boundaries between bare and cofilin-decorated segments. J Biol Chem 293:5377–5383. https://doi.org/10.1074/jbc.AC118.001843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley HE (1957) The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol 3:631–648

    Article  CAS  Google Scholar 

  • Jontes JD, Wilson-Kubalek EM, Milligan RA (1995) A 32 degree tail swing in brush border myosin I on ADP release. Nature 378:751–753

    Article  CAS  Google Scholar 

  • Kühlbrandt W (2014) The resolution revolution. Science 343:1443–1444

    Article  Google Scholar 

  • McGough A, Pope B, Chiu W, Weeds A (1997) Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol 138:771–781

    Article  CAS  Google Scholar 

  • McMullan G, Faruqi AR, Henderson R (2016) Direct electron detectors. Methods Enzymol 579:1–17. https://doi.org/10.1016/bs.mie.2016.05.056

    Article  CAS  PubMed  Google Scholar 

  • Ménétret JF, Hofmann W, Schröder RR, Rapp G, Goody RS (1991) Time-resolved cryo-electron microscopic study of the dissociation of actomyosin induced by photolysis of photolabile nucleotides. J Mol Biol 219:139–144

    Article  Google Scholar 

  • Mentes A, Huehn A, Liu X, Zwolak A, Dominguez R, Shuman H, Ostap EM, Sindelaar CV (2018) High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proc Natl Acad Sci U S A 15:1292–1297

    Article  Google Scholar 

  • Milligan RA, Flicker EE (1987) Structural relationships of actin, myosin, and tropomyosin revealed by cryo-electron microscopy. J Cell Biol 105:29–39

    Article  CAS  Google Scholar 

  • Moore PB, Huxley HE, DeRosier DJ (1970) Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol 50:279–295

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  • Prochniewicz E, Zhang Q, Janmey PA, Thomas DD (1996) Cooperativity in F-actin: binding of gelsolin at the barbed end affects structure and dynamics of the whole filament. J Mol Biol 260:756–766

    Article  CAS  Google Scholar 

  • Qu Z, Fujita-Becker S, Ballweber E, Ince S, Herrmann C, Schroeder RR, Mannherz HG (2018) Interaction of isolated cross-linked short actin oligomers with the skeletal muscle myosin motor domain. FEBS J 285:1715–1729. https://doi.org/10.1111/febs.14442

    Article  CAS  PubMed  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Bäse K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993a) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  CAS  Google Scholar 

  • Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993b) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65

    Article  CAS  Google Scholar 

  • Robert-Paganin J, Pylypenko O, Kikuti C, Sweeney HL, Houdusse A (2019) Force generation by myosin motors: a structural perspective. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00264. [Epub ahead of print]

    Article  Google Scholar 

  • Schaffer M, Mahamid J, Engel BD, Laugks T, Baumeister W, Plitzko JM (2017) Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J Struct Biol 197:73–82. https://doi.org/10.1016/j.jsb.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  • Schaffer M, Pfeffer S, Mahamid J, Kleindiek S, Laugks T, Albert S, Engel BD, Rummel A, Smith AJ, Baumeister W, Plitzko JM (2019) A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat Methods 16:757–762. https://doi.org/10.1038/s41592-019-0497-5

    Article  CAS  PubMed  Google Scholar 

  • Scheres SHW (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530

    Article  CAS  Google Scholar 

  • Schröder RR (2015) Advances in electron microscopy: a qualitative view of instrumentation development for macromolecular imaging and tomography. Arch Biochem Biophys 581:25–38. https://doi.org/10.1016/j.abb.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  • Schröder RR, Manstein DJ, Jahn W, Holden H, Rayment I, Holmes KC, Spudich JA (1993) Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature 364:171–174

    Article  Google Scholar 

  • Sellers JR, Veigel C (2006) Walking with myosin V. Curr Opin Cell Biol 18:68–73

    Article  CAS  Google Scholar 

  • Taylor KA, Schmitz H, Reedy MC, Goldman YE, Franzini-Armstrong C, Sasaki H, Tregear RT, Poole K, Lucaveche C, Edwards RJ, Chen LF, Winkler H, Reedy MK (1999) Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle. Cell 99:421–431

    Article  CAS  Google Scholar 

  • Taylor KA, Rahmani H, Edwards RJ, Reedy MK (2019) Insights into actin-myosin interactions within muscle from 3D electron microscopy. Int J Mol Sci 20:E1703. https://doi.org/10.3390/ijms20071703

    Article  CAS  PubMed  Google Scholar 

  • Veigel C, Coluccio LM, Jontes JD, Sparrow JC, Milligan RA, Molloy JE (1999) The motor protein myosin-I produces its working stroke in two steps. Nature 398:530–533

    Article  CAS  Google Scholar 

  • von der Ecken J, Heissler SM, Pathan-Chhatbar S, Manstein DJ, Raunser S (2016) Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 534:724–728

    Article  CAS  Google Scholar 

  • Walker M, Zhang XZ, Jiang W, Trinick J, White HD (1999) Observation of transient disorder during myosin subfragment-1 binding to actin by stopped-flow fluorescence and millisecond time resolution electron cryomicroscopy: evidence that the start of the crossbridge power stroke in muscle has variable geometry. Proc Natl Acad Sci U S A 96:465–470

    Article  CAS  Google Scholar 

  • Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401:505–508

    Article  CAS  Google Scholar 

  • Whittaker M, Wilson-Kubalek EM, Smith JE, Faust L, Milligan RA, Sweeney HL (1995) A 35-A movement of smooth muscle myosin on ADP release. Nature 378:748–751

    Article  CAS  Google Scholar 

  • Wu S, Liu J, Reedy MC, Tregear RT, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Goldman YE, Reedy MK, Taylor KA (2010) Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions. PLoS One 5:e12643. https://doi.org/10.1371/journal.pone.0012643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Liu J, Reedy MC, Perz-Edwards RJ, Tregear RT, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Goldman YE, Reedy MK, Taylor KA (2012) Structural changes in isometrically contracting insect flight muscle trapped following a mechanical perturbation. PLoS One 7:e39422. https://doi.org/10.1371/journal.pone.0039422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulf SF, Ropars V, Fujita-Becker S, Oster M, Hofhaus G, Trabuco LG, Pylypenko O, Sweeney HL, Houdusse AM, Schröder RR (2016) Force-producing ADP state of myosin bound to actin. Proc Natl Acad Sci U S A 113:E1844–E1852. https://doi.org/10.1073/pnas.1516598113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus R. Schröder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schröder, R.R. (2020). The Structure of Acto-Myosin. In: Coluccio, L. (eds) Myosins. Advances in Experimental Medicine and Biology, vol 1239. Springer, Cham. https://doi.org/10.1007/978-3-030-38062-5_4

Download citation

Publish with us

Policies and ethics