Skip to main content

Sustainable, Renewable, and Biodegradable Poly(Lactic Acid) Fibers and Their Latest Developments in the Last Decade

  • Chapter
  • First Online:
Sustainability in the Textile and Apparel Industries

Abstract

PLA [poly(lactic acid)] is a sustainable, renewable, biodegradable, bioabsorbable, biocompatible linear aliphatic thermoplastic polyester fiber produced from 100% renewable resources like corn, starch, and rice. PLA’s melt processing simplicity, sustainable and renewable source origin, exceptional property spectrum, and composting easiness and recyclable nature at the end of its lifetime have resulted in PLA fibers finding an enhancing interest and acceptance over a wide range of commercial textile sectors. PLA can find many different application types from medical and pharmaceutical applications to environmentally benign film and fibers for packaging, houseware, and apparel. PLA stands out as a potential option in many different fields for reducing environmental concerns and for a more sustainable future. In this chapter, sustainable, renewable, and biodegradable poly(lactic acid) fibers and their latest developments in the last decade are comprehensively reviewed. First of all, poly(lactic acid) is introduced. Then, the recent studies about the usage of PLA in various biomedical application types such as tissue engineering, wound dressing, drug-delivery systems, antibacterial mats, and biosensors are reviewed. Then, the information regarding the recent improvements in the wet processing of PLA fibers (such as scouring, bleaching, surface modification, and dyeing) with modern sustainable processing techniques is given. Finally, 3D printing with PLA is also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nofar M, Sacligil D, Carreau PJ et al (2019) Poly (lactic acid) blends: processing, properties and applications. Int J Biol Macromol 125:307–360

    Article  Google Scholar 

  2. Gashti MP, Pournaserani A, Ehsani H et al (2013) Surface oxidation of cellulose by ozone-gas in a vacuum cylinder to improve the functionality of fluoromonomer. Vacuum 91:7–13

    Article  Google Scholar 

  3. Lertphirun K, Srikulkit K (2019) Properties of poly(lactic acid) filled with hydrophobic cellulose/SiO2 composites. Int J Polym Sci 2019:7835172

    Article  Google Scholar 

  4. Fattahi F, Izadan H, Khoddami A. (2011) Deep dyeing of poly (lactic acid) and poly (ethylene terephthalate) fabrics using UV/ozone irradiation. In: 4th International Color and Coatings Congress, Tehran-Iran, 22–24 November 2011

    Google Scholar 

  5. Fattahi F, Izadan H, Khoddami A (2012) Investigation into the effect of UV/ozone irradiation on dyeing behaviour of poly(lactic acid) and poly(ethylene terephthalate) substrates. Prog Color Colorants Coat 5:15–22

    Google Scholar 

  6. Khoddami A, Avinc O, Ghahremanzadeh F (2011) Improvement in poly(lactic acid) fabric performance via hydrophilic coating. Prog Org Coat 72(3):299–304

    Article  Google Scholar 

  7. Khoddami A, Avinc O, Mallakpour S (2010) A novel durable hydrophobic surface coating of poly(lactic acid) fabric by pulsed plasma polymerization. Prog Org Coat 67(3):311–316

    Article  Google Scholar 

  8. Avinc O, Khoddami A, Hasani H (2011) A mathematical model to compare the handle of PLA and PET knitted fabrics after different finishing steps. Fibers Polym 12(3):405–413

    Article  Google Scholar 

  9. Doustgani A, Ahmadi E (2016) Melt electrospinning process optimization of polylactic acid nanofibers. J Indus Text 45(4):626–634

    Article  Google Scholar 

  10. Jain A, Kunduru KR, Basu A et al (2016) Injectable formulations of poly(lactic acid) and its copolymers in clinical use. Adv Drug Deliv Rev 107:213–227

    Article  Google Scholar 

  11. Magiera A, Markowski J, Menaszek E et al (2017) PLA-based hybrid and composite electrospun fibrous scaffolds as potential materials for tissue engineering. J Nanomater 2017:9246802

    Article  Google Scholar 

  12. Scaffaro R, Lopresti F, Marino A, Nostro A (2018) Antimicrobial additives for poly(lactic acid) materials and their applications: current state and perspectives. Appl Microbiol Biotechnol 102:7739–7756

    Article  Google Scholar 

  13. Toncheva A, Spasova M, Paneva D et al (2014) Polylactide (PLA)-based electrospun fibrous materials containing ionic drugs as wound dressing materials: a review. Int J Polym Mater Polym Bio Mater 63:657–671

    Article  Google Scholar 

  14. Hu W, Huang Z-M (2010) Biocompatibility of braided poly(L-lactic acid) nanofiber wires applied as tissue sutures. Polym Int 59:92–99

    Article  Google Scholar 

  15. Tsuji H (2016) Poly(lactic acid) stereocomplexes: a decade of progress. Adv Drug Deliv Rev 107:97–135

    Article  Google Scholar 

  16. Shahverdi S, Hajimiri M, Esfandiari MA et al (2014) Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. Int J Pharm 473:345–355

    Article  Google Scholar 

  17. Samuel C, Cayuela J, Barakat I et al (2013) Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials. ACS Appl Mater Interfaces 5(22):11797–11807

    Article  Google Scholar 

  18. Samadi A, Abdolrasouli MH, Babaei A (2018) Effect of organo-clay modifier and compatibilizer on the morphological development and cold crystallization kinetics of polylactide/polyethylene/montmorillonite nanocomposites. Iran J Polym Sci Technol 31(3):251–264

    Google Scholar 

  19. Shi X, Zhang G, Siligardi C et al (2015) Comparison of precipitated calcium carbonate/polylactic acid and halloysite/polylactic acid nanocomposites. J Nanomater 2015:905210

    Google Scholar 

  20. Shao W, He J, Han Q et al (2016) A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and tussah silk fibroin as a scaffold for bone tissue engineering. Mater Sci Eng A 67:599–610

    Article  Google Scholar 

  21. Gizdavic-Nikolaidis M, Ray S, Bennett J et al (2011) Electrospun poly(aniline-co-ethyl 3-aminobenzoate)/poly(lactic acid) nanofibers and their potential in biomedical applications. J Polym Sci A Polym Chem 49:4902–4910

    Article  Google Scholar 

  22. Su CJ, Tu MG, Wei L et al (2017) Calcium silicate/chitosan-coated electrospun poly (lactic acid) fibers for bone tissue engineering. Materials 10:E501

    Article  Google Scholar 

  23. Casasola R, Thomas NL (2016) Electrospinning of poly(lactic acid): theoretical approach for the solvent selection to produce defect-free nanofibers. J Polym Sci B 54(15)

    Google Scholar 

  24. Shan X, Li F, Liu C (2014) Electrospinning of chitosan/poly(lactic acid) nanofibers: the favorable effect of nonionic surfactant. J Appl Polym Sci 131(22)

    Google Scholar 

  25. Casasola R, Thomas NL, Georgiadou S (2016) Electrospinning of poly(lactic acid): theoretical approach for the solvent selection to produce defect-free nanofibers. J Polym Sci Polym Phys 54:1483–1498

    Article  Google Scholar 

  26. Ramot Y, Haim-Zada M, Domb AJ, Nyska A (2016) Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev 107:153–162

    Article  Google Scholar 

  27. Yang T, Zhou W, Ma P (2019) Manufacture and property of warp-knitted fabrics with polylactic acid multifilament. Polymers 11:65

    Article  Google Scholar 

  28. Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659

    Article  Google Scholar 

  29. Khoo RZ, Ismail H, Chow WS (2016) Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Proc Chem 19:788–794

    Article  Google Scholar 

  30. Liu C, Wong HM, Yeung KWK, Tjong SC (2016) Novel electrospun polylactic acid nanocomposite fiber Mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility. Polymers 8(8):287

    Article  Google Scholar 

  31. Li J, Song Z, Gao L, Shan H (2016) Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method. Polym Bull 73(8):2121–2128

    Article  Google Scholar 

  32. James R, Manoukian OS, Kumbar SG (2016) Poly(lactic acid) for delivery of bioactive macromolecules. Adv Drug Deliv Rev 107:277–288

    Article  Google Scholar 

  33. Lv J, Yin X, Zeng Q et al (2017) Preparation of carboxymethyl chitosan nanofibers through electrospinning the ball-milled nanopowders with poly (lactic acid) and the blood compatibility of the electrospun NCMC/PLA mats. J Polym Res 24(4)

    Google Scholar 

  34. Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46

    Article  Google Scholar 

  35. Kayaci F, Umu O, Tekinay T et al (2013) Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes. J Agric Food Chem 61:3901–3908

    Article  Google Scholar 

  36. Hadjizadeh A, Savoji H, Ajji A (2016) A facile approach for the mass production of submicro/micro poly (lactic acid) fibrous mats and their cytotoxicity test towards neural stem cells. Biomed Res Int 2016:8921316

    Article  Google Scholar 

  37. Arjmandi R, Hassan A, Zakaria Z (2017) Polylactic acid green nanocomposites for automotive applications. Green Biocomp Design Appl:193–208

    Google Scholar 

  38. Revati R, Majid MSA, Normahira M (2015) Biodegradable poly (lactic acid) scaffold for tissue engineering: a brief review. Iran J Polym Sci Technol 1(1):16–24

    Google Scholar 

  39. Kalia S, Dufresne A, Cherian B et al (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011:837875

    Google Scholar 

  40. Santoro M, Shah SR, Walker JL, Mikos AG (2016) Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 107:206–212

    Article  Google Scholar 

  41. Tyler B, Gullotti D, Mangraviti A et al (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175

    Article  Google Scholar 

  42. Ospina-Orejarena A, Vera-Graziano R, Castillo-Ortega MM et al (2016) Grafting collagen on poly (lactic acid) by a simple route to produce electrospun scaffolds, and their cell adhesion evaluation. Tiss Eng Regen Med 13(4):375–387

    Article  Google Scholar 

  43. Hamada K, Kaseemb M, Ayyoobd M et al (2018) Polylactic acid blends: the future of green, light and tough. Prog Polym Sci 85:83–127

    Article  Google Scholar 

  44. Sharma J, Lizu M, Stewart M et al (2015) Multifunctional nanofibers towards active biomedical therapeutics. Polymers 7:186–219

    Article  Google Scholar 

  45. Mokhena TC, Sefadi JS, Sadiku ER et al (2018) Thermoplastic processing of PLA/cellulose nanomaterials composites. Polymers 10:1363

    Article  Google Scholar 

  46. Gorrasi G, Sorrentino A, Pantani R (2015) Modulation of biodegradation rate of poly(lactic acid) by silver nanoparticles. J Polym Environ 23(3):316–320

    Article  Google Scholar 

  47. Zhang W, Ronca S, Mele E (2017) Electrospun nanofibres containing antimicrobial plant extracts. Nanomaterials 7:42

    Article  Google Scholar 

  48. Li L, Stiadle JM, Lau HK et al (2016) Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials 108:91–110

    Article  Google Scholar 

  49. Muthukumar T, Aravinthan A, Sharmila J et al (2016) Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with ginseng compound K. Carbohydr Polym 152:566–574

    Article  Google Scholar 

  50. Zhou H, Tang Y, Wang Z et al (2018) Cotton-like micro- and nanoscale poly(lactic acid) nonwoven fibers fabricated by centrifugal meltspinning for tissue engineering. RSC Adv 8:5166–5179

    Article  Google Scholar 

  51. Mohiti-Asli M, Saha S, Murphy SV et al (2015) Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. J Biomed Mater Res B 105:327–339

    Article  Google Scholar 

  52. Jiang S, Lv J, Ding M et al (2016) Release behavior of tetracycline hydrochloride loaded chitosan/poly(lactic acid) antimicrobial nanofibrous membranes. Mater Sci Eng C 59:86–91

    Article  Google Scholar 

  53. Quirós J, Boltes K, Rosal R (2016) Bioactive applications for electrospun fibers. Polym Rev 56:631–667

    Article  Google Scholar 

  54. Aldana A, Abraham G (2017) Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm 523(2):441–453

    Article  Google Scholar 

  55. Xu T, Yang H, Yang D et al (2017) Polylactic acid nanofiber scaffold decorated with chitosan island like topography for bone tissue engineering. ACS Appl Mater Interfaces 9(25):21094–21104

    Article  Google Scholar 

  56. Xu T, Miszuk JM, Zhao Y et al (2015) Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater 4(15):2238–2246

    Article  Google Scholar 

  57. Tetteh G, Khan AS, Delaine-Smith RM et al (2014) Electrospun poly urethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxy apatite particles. J Mech Behav Biomed Mater 39:95–110

    Article  Google Scholar 

  58. Wang Y, Yang X, Gu Z et al (2016) In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold. Mater Sci Eng C 66:185–192

    Article  Google Scholar 

  59. Cavo M, Scaglione S (2016) Scaffold microstructure effects on functional and mechanical performance: integration of theoretical and experimental approaches for bone tissue engineering applications. Mater Sci Eng C 68:872–879

    Article  Google Scholar 

  60. Fu Y, Liu L, Cheng R et al (2018) ECM decorated electrospun nanofiber for improving bone tissue regeneration. Polymers 10:272–284

    Article  Google Scholar 

  61. Birhanu G, Tanha S, Akbari Javar H et al (2018) Dexamethasone loaded multi-layer poly-l-lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery. Pharm Dev Technol:1–10

    Google Scholar 

  62. Jing X, Mi H-Y, Salick MR et al (2015) Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications. Mater Sci Eng C 49:40–50

    Article  Google Scholar 

  63. Gugutkov D, Gustavsson J, Cantini M et al (2016) Electrospun fibrinogen-PLA nanofibres for vascular tissue engineering. J Tissue Eng Regen Med 11(10):2774–2784

    Article  Google Scholar 

  64. Farzamfar S, Esmailpour F, Rahmati M et al (2017) Poly-lactic acid/gelatin nanofiber (PLA/GTNF) conduits containing platelet-rich plasma for peripheral nerve regeneration. Int J Health Stud 3(2)

    Google Scholar 

  65. HY TX, Yang D, Yu Z-Z (2017) Polylactic acid nanofiber scaffold decorated with chitosan island like topography for bone tissue engineering. ACS Appl Mater Interfaces 9:21094–21104

    Article  Google Scholar 

  66. Andreu V, Mendoza G, Arruebo M, Irusta S (2015) Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials 8:5154–5193

    Article  Google Scholar 

  67. Fayemi OE, Ekennia AC, Katata-Seru L et al (2018) Antimicrobial and wound healing properties of polyacrylonitrile-moringa extract nanofibers. ACS Omega 3(5):4791–4797

    Article  Google Scholar 

  68. Song DW, Kim SH, Kim HH et al (2016) Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomater 39:146–155

    Article  Google Scholar 

  69. Dhivya S, Viswanadha VP, Santhini E (2015) Wound dressings—a review. Biomedicine 5(4)

    Google Scholar 

  70. Felgueiras HP, Amorim MTP (2017) Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids Surf B Biointerfaces 156:133–148

    Article  Google Scholar 

  71. Dzikowski M, Castanié N, Guedon A et al (2017) Antibiotic incorporation in jet-sprayed nanofibrillar biodegradable scaffolds for wound healing. Int J Pharm 532:802–812

    Article  Google Scholar 

  72. Gomaa SF, Madkour TM, Moghannem S et al (2017) New polylactic acid/cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. Int J Biol Macromol 105:1148–1160

    Article  Google Scholar 

  73. Pilehvar-Soltanahmadi Y, Dadashpour M, Mohajeri A et al (2018) An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings. Mini Rev Med Chem 18(5):414–427

    Article  Google Scholar 

  74. Gainza G, Villullas S, Pedraz JL et al (2015) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine 11(6):1551–1573

    Article  Google Scholar 

  75. Vakilian S, Norouzi M, Soufi-Zomorrod M et al (2018) Inermis-loaded nanofibrous scaffolds for wound dressing applications. Tissue Cell 51:32–38

    Article  Google Scholar 

  76. Lai H-J, Kuan C-H, Wu H-C et al (2014) Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 10(10):4156–4166

    Article  Google Scholar 

  77. Tocco I, Zavan B, Bassetto F et al (2012) Nanotechnology-based therapies for skin wound regeneration. J Nanomater 2012:714134

    Article  Google Scholar 

  78. Khan A, Xiangyang S, Ahmad A et al (2018) Electrospinning of crude plant extracts for antibacterial and wound healing applications: a review. SM J Biomed Eng 4(1):1024

    Google Scholar 

  79. Chen S, Liu B, Carlson MA et al (2017) Recent advances in electrospun nanofibers for wound healing. Nanomedicine 12(11):1335–1352

    Article  Google Scholar 

  80. Chereddy K, Coco R, Memvanga P et al (2013) Combined effect of PLGA and curcumin on wound healing activity. J Control Release 171:208–215

    Article  Google Scholar 

  81. Rahmani Del Bakhshayesh A, Annabi N et al (2018) Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cell Nanomed BioTech 46(4):691–705

    Article  Google Scholar 

  82. Gao W, Sun L, Fu X et al (2018) Enhanced diabetic wound healing by electrospun core–sheath fibers loaded with dimethyloxalylglycine. J Mater Chem B 6(2):277–288

    Article  Google Scholar 

  83. Pásztor N, Rédai E, Szabó Z-I, Sipos E (2017) Preparation and characterization of levofloxacin-loaded nanofibers as potential wound dressings. Acta Med Marisiensis 63(2):66–69

    Article  Google Scholar 

  84. Perumal G, Pappuru S, Chakraborty D et al (2017) Synthesis and characterization of curcumin loaded PLA—hyperbranched polyglycerol electrospun blend for wound dressing applications. Korean J Couns Psychother 76:1196–1204

    Google Scholar 

  85. Foong CY, Hamzah MSA, Razak SIA et al (2018) Influence of poly(lactic acid) layer on the physical and antibacterial properties of dry bacterial cellulose sheet for potential acute wound healing maters. Fibers Polym 19(2):263–271

    Article  Google Scholar 

  86. Scaffaro R, Lopresti F, D’Arrigo M et al (2018) Efficacy of poly(lactic acid)/carvacrol electrospun membranes against Staphylococcus aureus and Candida albicans in single and mixed cultures. Appl Microbiol Biotechnol 102:4171–4181

    Article  Google Scholar 

  87. AdomaviIi E, PupkeviIi S, Juškait V et al (2017) Formation and investigation of electrospun PLA materials with propolis extracts and silver nanoparticles for biomedical applications. J Nanomater 2017:8612819

    Google Scholar 

  88. Doustgani A (2017) Doxorubicin release from optimized electrospun polylactic acid nanofibers. J Indus Text 47(1):71–88

    Article  Google Scholar 

  89. Yu Q, Li Y, Han L et al (2019) Self-suspended starch fluids for simultaneously optimized toughness, electrical conductivity, and thermal conductivity of polylactic acid composite. Compos Sci Technol 169:76–85

    Article  Google Scholar 

  90. Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim HY (2017) Electrospun nanofibers: new generation materials for advanced applications. Mater Sci Eng B 217:36–48

    Article  Google Scholar 

  91. Nepomuceno N, Ma B, Bonan R et al (2018) Antimicrobial activity of PLA/PEG nanofibers containing terpinen-4-ol against aggregatibacter actinomycetemcomitans. J Appl Polym Sci 135:45782

    Article  Google Scholar 

  92. Wang Z, Pan Z, JigenWang ZR (2016) A novel hierarchical structured poly(lactic acid)/Titania fibrous membrane with excellent antibacterial activity and air filtration performance. J Nanomater 2016:6272983

    Google Scholar 

  93. Bonan RF, Bonan PRF, Batista AUD et al (2015) In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with copaiba (Copaifera sp.) oil. Mater Sci Eng C 48:372–377

    Article  Google Scholar 

  94. Nootsuwan N, Wattanathana W, Jongrungruangchok S et al (2018) Development of novel hybrid materials from polylactic acid and nano-silver coated carbon black with distinct antimicrobial and electrical properties. J Polym Res 25(4)

    Google Scholar 

  95. González E, Shepherd LM, Saunders L, Frey MW (2016) Surface functional poly(lactic acid) electrospun nanofibers for biosensor applications. Materials 9:47

    Article  Google Scholar 

  96. Calzoni E, Cesaretti A, Polchi A et al (2019) Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater 10:E4

    Article  Google Scholar 

  97. Amani A, Kabiri T, Shafiee S, Hamidi A (2019) Preparation and characterization of PLA-PEG-PLA/PEI/DNA nanoparticles for improvement of transfection efficiency and controlled release of DNA in gene delivery systems. Iran J Pharm Res 18(1):125–141

    Google Scholar 

  98. Silva RTD, Pasbakhsh P, SuiMae L, Kit AY (2015) ZnO deposited/encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Appl Clay Sci 111:10–20

    Article  Google Scholar 

  99. Spinelli G, Lamberti P, Tucci V et al (2019) Rheological and electrical behavior of nanocarbon/poly(lactic) acid for 3D printing applications. Compos B 167:467–476

    Article  Google Scholar 

  100. Avinc O, Day R, Carr C, Wilding M (2012) Effect of combined flame retardant, liquid repellent and softener finishes on poly(lactic acid) (PLA) fabric performance. Text Res J 82:975–984

    Article  Google Scholar 

  101. Cui W, Cheng L, Hu C et al (2013) Electrospun poly(L-Lactide) fiber with Ginsenoside Rg3 for inhibiting scar hyperplasia of skin. PLoS One 8(7):e68771

    Article  Google Scholar 

  102. Bilbao-Sainz C, Chiou B-S, Valenzuela-Medina D et al (2014) Solution blow spun poly(lactic acid)/hydroxypropyl methylcellulose nanofibers with antimicrobial properties. Eur Polym J 54:1–10

    Article  Google Scholar 

  103. Avinc O, Owens H, Bone J et al (2011) A colorimetric quantification of softened polylactic acid and polyester filament knitted fabrics to ‘water-spotting. Fibers Polym 12:893–903

    Article  Google Scholar 

  104. Avinc O, Wilding M, Gong H, Farrington D (2010) Effects of softeners and laundering on the handle of knitted PLA filament fabrics. Fibers Polym 11:924–931

    Article  Google Scholar 

  105. Hussain T, Tausif M, Ashraf M (2015) A review of progress in the dyeing of eco-friendly aliphatic polyester-based polylactic acid fabrics. J Clean Prod 108:476–483

    Article  Google Scholar 

  106. GA B, CM C (2015) Surface and structural damage to PLA fibres during textile pretreatments. Fiber Text East Eur 24(2):52–58

    Google Scholar 

  107. Ren Y, Xu L, Wang C et al (2017) Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics. Appl Surf Sci 426:612–621

    Article  Google Scholar 

  108. Lee SH, Yeo SY (2016) Improvement of hydrophilicity of polylactic acid (PLA) fabrics by means of a proteolytic enzyme from bacillus licheniformis. Fibers Polym 17(8):1154–1161

    Article  Google Scholar 

  109. Deshmukh RR, Bhat NV (2011) Pretreatments of Textiles Prior to Dyeing: Plasma Processing, Textile Dyeing, InTech Prof. Peter Hauser (Ed.), ISBN: 978-953-307-565-5

    Google Scholar 

  110. Silva R, Júnior C, Neves J et al (2018) Controlling wettability of the each side of the PLA fabric through orientation of the working gases (O2 and CH4) during cold plasma treatment. Mater Res 21(1)

    Google Scholar 

  111. Rezaei F, Nikiforov A, Morent R, De Geyter N (2018) Plasma modification of poly lactic acid solutions to generate high quality electrospun PLA nanofibers. Sci Rep 8(1):2241

    Article  Google Scholar 

  112. Wang C, Lin L-H, Chen C-W, Lo Y-C (2017) Surface modification of poly(lactic acid) fabrics with plasma pretreatment and chitosan/Siloxane polyesters coating for color strength improvement. Polymers 9(371)

    Google Scholar 

  113. Wardman RH, Abdrabbo A (2010) Effect of plasma treatment on the spreading of micro drops through polylactic acid (PLA) and polyester (PET) fabrics. AUTEX Res J 10(1)

    Google Scholar 

  114. Rahmatinejad J, Khoddami A, Mazrouei-Sebdani Z, Avinc O (2016) Polyester hydrophobicity enhancement via UV-ozone irradiation, chemical pre-treatment and fluorocarbon finishing combination. Prog Org Coat 101:51–58

    Article  Google Scholar 

  115. Eren H, Avinc O, Uysal P, Wilding M (2011) The effects of ozone treatment on polylactic acid (PLA) fibres. Text Res J:1–9

    Google Scholar 

  116. Kohli R (2019) Applications of UV-ozone cleaning technique for removal of surface contaminants. In: Kohli R, Mittal KL (eds) Developments in surface contamination and cleaning: applications of cleaning techniques, vol 11. Elsevier, Amsterdam, pp 355–390

    Chapter  Google Scholar 

  117. Kohli R (2015) UV-ozone cleaning for removal of surface contaminants. In: Kohli R, Mittal KL (eds) Developments in surface contamination and cleaning, vol 9. William Andrew Publishing, Oxford, pp 71–104

    Chapter  Google Scholar 

  118. Xu S, Chen J, Wang B, Yang Y (2015) Sustainable and hydrolysis-free dyeing process for polylactic acid using nonaqueous medium. ACS Sus Chem Eng 3(6):1039–1046

    Article  Google Scholar 

  119. Zhang ZH, Xu ZQ, Huang TXM (2017) Dyeing processes of 100% bio-based and degradable polylactide/poly (hydroxybutyrate-co-hydroxyvalerate) textiles. Text Res J 10:2066–2075

    Article  Google Scholar 

  120. Kim HS, Park YK, Jo AR, Lee JJ (2017) Dispersant-free dyeing of poly(lactic acid) knitted fabric with temporarily solubilized Azo disperse dyes. Fibers Polym 18(7):1263–1268

    Article  Google Scholar 

  121. Hee LS, Song WS (2013). “Dyeing properties on polylactic acid (PLA) fabrics by disperse dyes.” Journal of the Korean Society of Clothing and Textiles 37(7):952–961

    Google Scholar 

  122. Baran EH, Erbil HY (2019) Surface modification of 3D printed PLA objects by fused deposition modeling: a review. Colloids Interfaces 3:43

    Article  Google Scholar 

  123. Dichtl C, Sippel P, Krohns S (2017) Dielectric properties of 3D printed polylactic acid. Adv Mater Sci Eng 2017:1–10

    Article  Google Scholar 

  124. Antoniac I, Popescu D, Zapciu A et al (2019) Magnesium filled polylactic acid (PLA) material for filament based 3D printing. Materials 12:719

    Article  Google Scholar 

  125. Cheng C, Gupta M (2017) Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition. Beilstein J Nanotechnol 8:1629–1636

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Avinc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fattahi, F.S., Khoddami, A., Avinc, O. (2020). Sustainable, Renewable, and Biodegradable Poly(Lactic Acid) Fibers and Their Latest Developments in the Last Decade. In: Muthu, S.S., Gardetti, M.A. (eds) Sustainability in the Textile and Apparel Industries. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-38013-7_9

Download citation

Publish with us

Policies and ethics