Skip to main content

Data-Driven Attack Modeling Using Acoustic Side-Channel

  • Chapter
  • First Online:
Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis

Abstract

Cyber-physical systems consist of a tight integration between computational, communication, and physical components. Due to this, most of the information in the cyber-domain manifests in terms of physical actions (such as motion, temperature change, etc.). However, this interaction may make the system vulnerable to physical-to-cyber domain attacks. These attacks affect the confidentiality of the system by utilizing the physical actions, which are governed by energy flows. Some of these observable energy flows unintentionally leak information about the cyber-domain. These information leaking observable energy flows are known as the side-channels. Side-channels such as acoustic, thermal, and power allow attackers to acquire the information without actually leveraging the vulnerability of the algorithms implemented in the system. In this chapter, we will demonstrate how a data-driven approach can be utilized to model an attack using acoustic side-channel. As a case study, we take cyber-physical additive manufacturing systems (fused deposition modeling based 3D printer) to demonstrate how the acoustic side-channel can be used to breach the confidentiality of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leukers, B., Gülkan, H., Irsen, S. H., Milz, S., Tille, C., Schieker, M., et al. (2005). Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. Journal of Materials Science: Materials in Medicine, 16(12), 1121–1124.

    Google Scholar 

  2. ISS Platform and Feedstock Recycling. (2014). NASA advanced manufacturing technology.

    Google Scholar 

  3. Short, B. (2015). Quality metal additive manufacturing (QUALITY MADE) enabling capability. www.navy.mil.

    Google Scholar 

  4. NDIA. (2014). Cyber security for advanced manufacturing. Technical report, National Defense Industrial Association.

    Google Scholar 

  5. Reznick, C. (2015). Manufacturing: A persistent and prime cyber attack target. www.cohnreznick.com.

    Google Scholar 

  6. Yampolskiy, M., Andel, T. R., McDonald, J. T., Glisson, W. B., & Yasinsac, A. (2014). Intellectual property protection in additive layer manufacturing: Requirements for secure outsourcing. In Proceedings of the 4th Program Protection and Reverse Engineering Workshop (New York, NY: ACM).

    Book  Google Scholar 

  7. Gibson, I., Rosen, D. W., & Stucker, B. (2014). Additive manufacturing technologies. Berlin: Springer.

    Google Scholar 

  8. Ashford, W. (2014). 21 percent of manufacturers hit by intellectual property theft.

    Google Scholar 

  9. WaII, D. S., & Yar, M. (2010). Intellectual property crime and the internet: cyber-piracy and stealing information intangibles. In Handbook of internet crime (p. 255).

    Google Scholar 

  10. Branigan, T. (2010). Google to end censorship in china over cyber attacks. In The Guardian (p. 01-12).

    Google Scholar 

  11. Standaert, F.-X., Malkin, T. G., & Yung, M. (2009). A unified framework for the analysis of side-channel key recovery attacks. In Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin: Springer.

    Google Scholar 

  12. Chhetri, S. R., Canedo, A., & Faruque, M. A. A. (2018). Confidentiality breach through acoustic side-channel in cyber-physical additive manufacturing systems. ACM Transaction on Cyber-Physical Systems, 2(1), 3.

    Google Scholar 

  13. SketchUp Make. (2015). www.sketchup.com.

  14. Adobe Photoshop CC. (2015). www.adobe.com.

  15. Holbrook, T. R., & Osborn, L. S. (2014). Digital patent infringement in an era of 3D printing. UC Davis Law Review, 48, 1319.

    Google Scholar 

  16. Sturm, L. D., Williams, C., Camelio, J., White, J., & Parker, R. (2014). Cyber-physical vulnerabilities in additive manufacturing systems. Context, 7, 8.

    Google Scholar 

  17. Backes, M., Dürmuth, M., Gerling, S., Pinkal, M., & Sporleder, C. (2010). Acoustic side-channel attacks on printers. In USENIX Security Symposium (pp. 307–322).

    Google Scholar 

  18. Toreini, E., Randell, B., & Hao, F. (2015). An acoustic side channel attack on enigma.

    Google Scholar 

  19. Davis, A., Rubinstein, M., Wadhwa, N., Mysore, G. J., Durand, F., & Freeman, W. T. (2014). The visual microphone: Passive recovery of sound from video. ACM Trans. Graph, 33(4), 79

    Article  Google Scholar 

  20. Vincent, H., Wells, L., Tarazaga, P., & Camelio, J. (2015). Trojan detection and side-channel analyses for cyber-security in cyber-physical manufacturing systems. Procedia Manufacturing, 1, 77–85.

    Article  Google Scholar 

  21. Hughes, A., & Lawrenson, P. J. (1975). Electromagnetic damping in stepping motors. In Proceedings of the Institution of Electrical Engineers (Vol. 122, pp. 819–824). London, UK: IET.

    Google Scholar 

  22. Kenjō, T., & Sugawara, A. (1994). Stepping motors and their microprocessor controls. Oxford: Oxford University Press.

    Google Scholar 

  23. Yang, S. J. (1981). Low-noise electrical motors (Vol. 13). Oxford: Oxford University Press.

    Google Scholar 

  24. Heller, B., & Hamata, V. (1977). Harmonic field effects in induction machines. Amsterdam: Elsevier.

    Google Scholar 

  25. Gieras, J.F., et al. (2005). Noise of polyphase electric motors. Boca Raton, FL: CRC Press.

    Google Scholar 

  26. Timár-P, L. T.-P., & Tímár, P. L. (1989). Noise and vibration of electrical machines (Vol. 34). Amsterdam: North Holland.

    Google Scholar 

  27. So, E. C. T., Williams, R. G. D., & Yang, S. J. (1993). ECT So, RGD Williams, and SJ Yang. A simple model to calculate the stator radial vibration of a hybrid stepping motor. In Conference Record of the 1993 IEEE Industry Applications Society Annual Meeting (pp. 122–129). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  28. Schafer, R. W., & Oppenheim, A. V. (1989). Discrete-time signal processing (Vol. 2). Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  29. Faruque, M. A. A., Chhetri, S. R., et al. (2016). Acoustic side-channel attacks on additive manufacturing systems. In International Conference on Cyber-Physical Systems (ICCPS). Piscataway, NJ: IEEE.

    Google Scholar 

  30. Theodoridis, S., Pikrakis, A., Koutroumbas, K., & Cavouras, D. (2010). Introduction to Pattern Recognition: A Matlab Approach: A Matlab Approach. London: Academic Press.

    Google Scholar 

  31. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

    MathSciNet  MATH  Google Scholar 

  32. Printrbot 3D Printers. (2015). www.printrbot.com.

  33. Zoom H6 Handy Recorder. (2015). www.zoom-na.com.

  34. MATLAB. (2015). (R2015b). Natick, MA: The MathWorks.

    Google Scholar 

  35. Python 2.7.10. (2015). www.python.org.

  36. Barry, D., Coyle, E., & Lawlor, B. (2004). Real-time sound source separation: Azimuth discrimination and resynthesis. In Audio Engineering Society Convention (Vol. 117). New York, NY: Audio Engineering Society.

    Google Scholar 

  37. Syskind, M. P., Larsen, J., Kjems, U., & Parra, L. C. (2007). A survey of convolutive blind source separation methods. In Multichannel Speech Processing Handbook (pp. 1065–1084).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rokka Chhetri, S., Al Faruque, M.A. (2020). Data-Driven Attack Modeling Using Acoustic Side-Channel. In: Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-37962-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37962-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37961-2

  • Online ISBN: 978-3-030-37962-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics