Skip to main content

Mathematical Modeling of Transient Heating Processes in the System of Three Single-Pole Cables

  • Conference paper
  • First Online:
VIII International Scientific Siberian Transport Forum (TransSiberia 2019)

Abstract

In this paper, we calculate a mathematical model of the transition process of forming the temperature field of a cable line with insulation from cross-linked polyethylene at various currents close to the maximum allowed. The model of underground cable laying with a triangle in standard climatic conditions is considered. When the current is applied, the temperature difference between the medium and the cable is a solution to the ordinary linear differential equation, which implies that the thermal balance of the system occurs 30 min after the start of operation. The model of formation of the thermal field of a cable using an equivalent screen shows proportionally close heating of the core and the screen. The temperature change of all cable elements describes a two-dimensional parabolic type equation with zero Neumann boundary conditions. The simulation is done in PDETool Matlab. Empirically, the heating time of the cable core to temperatures of 27, 40, 50° was determined. Numerical modeling takes into account the change in the thermophysical parameters of the cable with increasing temperature. For this, the simulation time is divided into three iterations with updating of the initial conditions and parameters of the equation. The proposed model makes it possible to evaluate the limiting currents of the cable load, possible changes in the materials used, laying methods, and determine the interdependence of the model parameters. Thermal analysis is used to solve operational problems, such as determining the values of the cross-sectional area of the cable and screen, methods of connecting and grounding the shielding shells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovac, N., Grulovic-Pavljanic, N., Kukavica, A.: Generated heat within power cable sheaths per unit time and volume. Appl. Therm. Eng. 52(1), 90–96 (2013). https://doi.org/10.1016/j.applthermaleng.2012.11.020

    Article  Google Scholar 

  2. Oklon, P., Cisek, P., Pilarczyk, M., Taler, D.:. Numerical simulation of heat dissipation processes in underground power cable system situated in thermal backfill and buried in a multilayered soil. Energy Convers. Manag. 95, 352–370 (2015). https://doi.org/10.1016/j.enconman.2015.01.092

  3. Oklon, P., Bittelli, M., Cisek, P., Kroener, E., Pilarczyk, M., Taler, D., Rao, R.V., Vallati, A.: The performance analysis of a new thermal backfill material for underground power cable system. Appl. Therm. Eng. 108, 233–250 (2016). https://doi.org/10.1016/j.applthermaleng.2016.07.102

    Article  Google Scholar 

  4. Quan, L., Fu, C., Si, W., Yang, J., Wang, Q.: Numerical study of heat transfer in underground power cable system. Energy Proc. 158, 5317–5322 (2019). https://doi.org/10.1016/j.egypro.2019.01.636

    Article  Google Scholar 

  5. Oklon, P., Cisek, P., Rerak, M., Taler, D., Rao, R.V., Vallati, A., Pilarczyk, M.: Thermal performance optimization of the underground power cable system by using a modified Jaya algorithm. Int. J. Therm. Sci. 123, 162–180 (2018). https://doi.org/10.1016/j.ijthermalsci.2017.09.015

    Article  Google Scholar 

  6. Salata, F., Nardecchia, F., Gugliermetti, F., Vollaro, A.: How thermal conductivity of excavation materials affects the behavior of underground power cables. Appl. Therm. Eng. 100, 528–537 (2016). https://doi.org/10.1016/j.applthermaleng.2016.01.168

    Article  Google Scholar 

  7. Salata, F., Nardecchia, F., Vollaro, A., Gugliermetti, F.: Underground electric cables a correct evaluation of the soil thermal resistance. Appl. Therm. Eng. 78, 268–277 (2015). https://doi.org/10.1016/j.applthermaleng.2014.12.059

    Article  Google Scholar 

  8. Ahmad, S., Rizvi, Z., Khan, M.A., Ahmad, J., Wuttke, F.: Experimental study of thermal performance of the backfill material around underground power cable under steady and cyclic thermal loading. Mater. Today 17, 85–95 (2019). https://doi.org/10.1016/j.matpr.2019.06.404

    Article  Google Scholar 

  9. Metwally, I.A., Al-Badi, A.H., Al Farsi, A.S.: Factors influencing ampacity and temperature of underground power cables. Electr. Eng. 95(4), 393 (2013). https://link.springer.com/article/10.1007/s00202–012-0271-5. Accessed 19 Aug 2019

  10. Gołębiowski, J., Zareba, M.: The simplified method for transient thermal field analysis in a polymeric DC cable. Electric. Eng. 93(4), 209–216 (2011). https://link.springer.com/article/10.1007/s00202-011-0207-5. Accessed 19 Aug 2019

  11. Bure, I.G., Khevsuriani, I.M., Bystrov, A.V.: Influence of the shield grounding system on choice of section. Russ. Electr. Eng. 87(11), 641–646 (2016). https://doi.org/10.3103/S1068371216110031

    Article  Google Scholar 

  12. Zarubin, V.S., Kuvyrkin, G.N., Savelyeva, I.Y.: Temperature state of electrical insulation of a superconducting DC cable. Cryogenics 95, 1–4 (2018). https://doi.org/10.1016/j.cryogenics.2018.08.003

    Article  Google Scholar 

  13. Brito Filho, J.P.: Heat transfer in bare and insulated electrical wires with linear temperature-dependent resistivity. Appl. Therm. Eng. 112, 881–887 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.172

    Article  Google Scholar 

  14. De Lieto, R., Fontana, L., Vallati, A.: Experimental study of thermal field deriving from an underground electrical power cable buried in non-homogeneous soils. Appl. Therm. Eng. 62(2), 390–397 (2014). https://doi.org/10.1016/j.applthermaleng.2013.09.002

    Article  Google Scholar 

  15. Trufanova, N.M., Navalikhina, E.Y., Gataulin, T.V.: Mathematical modeling of nonstationary processes of heat and mass transfer in a rectangular cable channel. Russ. Electric. Eng. 86(11), 556–560 (2015). https://doi.org/10.3103/S1068371215110139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Kolomiitseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolomiitseva, S., Sulyandziga, D., Sulyandziga, E. (2020). Mathematical Modeling of Transient Heating Processes in the System of Three Single-Pole Cables. In: Popovic, Z., Manakov, A., Breskich, V. (eds) VIII International Scientific Siberian Transport Forum. TransSiberia 2019. Advances in Intelligent Systems and Computing, vol 1115. Springer, Cham. https://doi.org/10.1007/978-3-030-37916-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37916-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37915-5

  • Online ISBN: 978-3-030-37916-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics