Skip to main content

Simulation of Devices for Voltage Regulation in 25 kV AC Electric Traction Network

  • Conference paper
  • First Online:
VIII International Scientific Siberian Transport Forum (TransSiberia 2019)

Abstract

This paper proposes a MATLAB/Simulink simulation model aimed at energy efficiency estimation of different devices for voltage regulation in the AC traction network. The electrified railroad section with the length of 40 km is modelled. The model contains blocks of high-voltage power supply, a high-voltage overhead line, symmetrical three-phase load, power transformers with on-load tap changer (OLTC), an overhead line, rails, and electric rolling stock and device with booster transformer (BT). The model allows to estimate a technical loss in all elements of the power supply system. The operating regime is simulated with the three-phase and single-phase load combination and different devices for voltage regulation. The speed of trains is 50 km/h, the train interval is 10 min. The total technical loss when applying of transformer OLTC is 12.08% more than for the option without adjustment, due to an increase in losses in the overhead line. The use of a device with BT will reduce annual losses by 2.06%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, X., Kang, R., McCulloch, M., Papachristodoulou, A.: Real-time active and reactive power regulation in power systems with tap-changing transformers and controllable loads. Sustain. Energy, Grids Netw. 5, 27–38 (2016). https://doi.org/10.1016/j.segan.2015.10.006

    Article  Google Scholar 

  2. Feizifar, B., Usta, O.: A new arc-based model and condition monitoring algorithm for on-load tap-changers. Electr. Power Syst. Res. 167, 58–70 (2019). https://doi.org/10.1016/j.epsr.2018.10.024

    Article  Google Scholar 

  3. Hu, J., Marinelli, M., Coppo, M., Zecchino, A., Bindner, H.W.: Coordinated voltage control of a decoupled three-phase on load tap changer transformer and photovoltaic inverters for managing unbalanced networks. Electr. Power Syst. Res. 131, 264–274 (2016). https://doi.org/10.1016/j.epsr.2015.10.025

    Article  Google Scholar 

  4. Iria, J.P., Heleno, M.L., Cardoso, G.: Optimal sizing and placement of energy storage systems and on-load tap changer transformers in distribution networks. Appl. Energy 250, 1147–1157 (2019). https://doi.org/10.1016/j.apenergy.2019.04.120

    Article  Google Scholar 

  5. Moolamkunnam, S.S., Mathew, J., Joseph, S.: Power electronic on-load tap changer for HVDC converter transformer. Int. J. Innovative Res. Electr. Electron. Instrum. Control Eng. 7(4), 50–58 (2019). https://doi.org/10.17148/IJIREEICE.2019.7408

    Article  Google Scholar 

  6. Plakhova, M., Mohamed, B., Arboleya, P.: Static model of a 2 × 25 kV AC traction system. In: 6th International Conference on Power Electronics Systems and Applications (PESA), pp. 1–5. IEEE Press, Hong Kong (2015). https://doi.org/10.1109/pesa.2015.7398917

  7. Kosarev, A.B., Kosarev, B.I.: Determination of the parameters of a compensating unit in a traction power supply system with a booster transformer. Russ. Electr. Eng. 89(9), 531–535 (2018). https://doi.org/10.3103/S1068371218090092

    Article  Google Scholar 

  8. Konstantinova, Y.A., Li, V.N., Tryapkin, E.Y.: Enhancing energy efficiency of 25 kV traction power system due to balancing current decrease. In: 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), pp. 1–5. IEEE Press, Vladivostok (2018). https://doi.org/10.1109/fareastcon.2018.8602632

  9. Shenoy, U.J., Sheshadri, K.G., Parthasarathy, K., Khincha, H.P., Thukaram, D.: MATLAB/PSB based modeling and simulation of 25 kV AC railway traction system - a particular reference to loading and fault conditions. In: 2004 IEEE Region 10 Conference TENCON, pp 508–511. IEEE Press, Chiang Mai, Thailand (2004). https://doi.org/10.1109/tencon.2004.1414819

  10. Worku, G.B., Kebede, A.B.: Autotransformer fed traction power supply system: analysis, modeling and simulation. Glob. Energy Interconnection 1(2), 187–196 (2018). https://doi.org/10.14171/j.2096-5117.gei.2018.02.011

    Article  Google Scholar 

  11. Samsudin, N.A., Ishak, D., Ahmad, A.B.: Design and experimental evaluation of a single-stage AC/DC converter with PFC and hybrid full-bridge refctifier. Eng. Sci. Technol. Int. J. 21(2), 189–200 (2018). https://doi.org/10.1016/j.jestch.2018.03.003

    Article  Google Scholar 

  12. Açikgöz, H., Keçecioğlu, Ö.F., Gani, A., Yıldız, C., Şekkeli, M.: Optimal control and analysis of three phase electronic power transformers. Proc. Soc. Behav. Sci. 195, 2412–2420 (2015). https://doi.org/10.1016/j.sbspro.2015.06.240

    Article  Google Scholar 

  13. Somkun, S.: Unbalanced synchronous reference frame control of singe-phase stand-alone inverter. Electr. Power Energy Syst. 107, 332–343 (2019)

    Article  Google Scholar 

  14. https://doi.org/10.1016/j.ijepes.2018.12.011

    Article  Google Scholar 

  15. Ibrahim, S., Cramer, A.M., Liao, Y.: Integrated control of voltage regulators and distributed generation inverters. Electr. Power Syst. Res. 169, 45–52 (2019). https://doi.org/10.1016/j.epsr.2018.12.003

    Article  Google Scholar 

  16. Pomalis, M., Leborgne, R.C., Herrera-Orozco, A.R., Bretas, A.S.: NSGAII optimization for single phase passive filter allocation in distribution systems. Electr. Power Syst. Res. 176, 1–9 (2019). https://doi.org/10.1016/j.epsr.2019.105923

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Konstantinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Konstantinova, Y., Li, V., Konstantinov, A. (2020). Simulation of Devices for Voltage Regulation in 25 kV AC Electric Traction Network. In: Popovic, Z., Manakov, A., Breskich, V. (eds) VIII International Scientific Siberian Transport Forum. TransSiberia 2019. Advances in Intelligent Systems and Computing, vol 1115. Springer, Cham. https://doi.org/10.1007/978-3-030-37916-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37916-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37915-5

  • Online ISBN: 978-3-030-37916-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics