Skip to main content

A Framework for Intelligent Policy Decision Making Based on a Government Data Hub

  • Conference paper
  • First Online:
Digital Transformation and Global Society (DTGS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1038))

Included in the following conference series:

Abstract

The e-Oman Integration Platform is a data hub that enables data exchanges across government in response to transactions. With millions of transactions weekly, and thereby data exchanges, we propose to investigate the potential of gathering intelligence from these linked sources to help government officials make more informed decisions. A key feature of this data is the richness and accuracy, which increases the value of the learning outcome when augmented by other big and open data sources. We consider a high-level framework within a government context, taking into account issues related to the definition of public policies, data privacy, and the potential benefits to society. A preliminary, qualitative validation of the framework in the context of e-Oman is presented. This paper lays out foundational work into an ongoing research to implement government decision-making based on big data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lazer, D., Kennedy, R., King, G., Vespignani, A.: The parable of Google Flu: traps in big data analysis. Science 343, 1203–1205 (2014)

    Article  Google Scholar 

  2. Janssen, M., Konopnicki, D., Snowdon, J., Ojo, A.: Driving public sector innovation using big and open linked data (BOLD). Inf. Syst. Front. 19, 189–195 (2017)

    Article  Google Scholar 

  3. Mergel, I., Rethemeyer, R., Isett, K.: Big data in public affairs. Public Adm. Rev. 76, 928–937 (2016)

    Article  Google Scholar 

  4. Ruhlandt, R.: The governance of smart cities: a systematic literature review. Cities 81, 1–23 (2018)

    Article  Google Scholar 

  5. Elsevier. https://www.elsevier.com/solutions/scopus. Accessed 29 Nov 2018

  6. Chadegani, A.A., et al.: A comparison between two main academic literature collections: web of science and scopus databases. Asian Soc. Sci. 9, 18–26 (2013)

    Article  Google Scholar 

  7. Kim, G.-H., Trimi, S., Chung, J.-H.: Big-data applications in the government sector. Commun. ACM 57, 78–85 (2014)

    Article  Google Scholar 

  8. Kummitha, R., Crutzen, N.: How do we understand smart cities? An evolutionary perspective. Cities 67, 43–52 (2017)

    Article  Google Scholar 

  9. Pencheva, I., Esteve, M., Mikhaylov, S.: Big data and AI–a transformational shift for government: so, what next for research? Public Policy Adm. (2018). 0952076718780537

    Google Scholar 

  10. Webster, J., Watson, R.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26, xiii–xxiii (2002)

    Google Scholar 

  11. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  12. Řehůřek, R.: gensim. https://radimrehurek.com/gensim/. Accessed 12 Dec 2018

  13. Doc2Vec Tutorial on the Lee Dataset. https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/doc2vec-lee.ipynb. Accessed 12 Dec 2018

  14. Gamage, P.: New development: leveraging ‘big data’ analytics in the public sector. Public Money Manag. 36, 385–390 (2016)

    Article  Google Scholar 

  15. Joseph, R., Johnson, N.: Big data and transformational government. IT Prof. 15, 43–48 (2013)

    Article  Google Scholar 

  16. Malomo, F., Sena, V.: Data intelligence for local government? Assessing the benefits and barriers to use of big data in the public sector. Policy Internet 9, 7–27 (2017)

    Article  Google Scholar 

  17. Kosorukov, A.: Digital government model: theory and practice of modern public administration. J. Legal Ethical Regul. Issues 20 (2017)

    Google Scholar 

  18. Jin, X., Wah, B., Cheng, X., Wang, Y.: Significance and challenges of big data research. Big Data Res. 2, 59–64 (2015)

    Article  Google Scholar 

  19. Taylor, L., Cowls, J., Schroeder, R., Meyer, E.: Big data and positive change in the developing world. Policy Internet 6, 418–444 (2014)

    Article  Google Scholar 

  20. Janssen, M., Kuk, G.: Big and open linked data (BOLD) in research, policy, and practice. J. Organ. Comput. Electron. Commer. 26, 3–13 (2016)

    Article  Google Scholar 

  21. Clarke, A., Margetts, H.: Governments and citizens getting to know each other? Open, closed, and big data in public management reform. Policy Internet 6, 393–417 (2014)

    Article  Google Scholar 

  22. Washington, A.: Government information policy in the era of big data. Rev. Policy Res. 31, 319–325 (2014)

    Article  Google Scholar 

  23. Power, D.: “Big Brother” can watch us. J. Decis. Syst. 25, 578–588 (2016)

    Article  Google Scholar 

  24. Höchtl, J., Parycek, P., Schöllhammer, R.: Big data in the policy cycle: policy decision making in the digital era. J. Organ. Comput. Electron. Commer. 26, 147–169 (2016)

    Article  Google Scholar 

  25. Hardy, K., Maurushat, A.: Opening up government data for big data analysis and public benefit. Comput. Law Secur. Rev. 33, 30–37 (2017)

    Article  Google Scholar 

  26. Shamsi, J., Khojaye, M.: Understanding privacy violations in big data systems. IT Prof. 20, 73–81 (2018)

    Article  Google Scholar 

  27. Lesk, M.: Big data, big brother, big money. IEEE Secur. Priv. 11, 85–89 (2013)

    Article  Google Scholar 

  28. Shmueli, G.: Research dilemmas with behavioral big data. Big Data 5, 98–119 (2017)

    Article  Google Scholar 

  29. Giest, S.: Big data for policymaking: fad or fasttrack? Policy Sci. 50, 367–382 (2017)

    Article  Google Scholar 

  30. Géczy, P.: Big data characteristics. Macrotheme Rev. 3, 94–104 (2014)

    Google Scholar 

  31. Klievink, B., Romijn, B.-J., Cunningham, S., Bruijn, H.: Big data in the public sector: uncertainties and readiness. Inf. Syst. Front. 19, 267–283 (2017)

    Article  Google Scholar 

  32. Bertot, J., Gorham, U., Jaeger, P., Sarin, L., Choi, H.: Big data, open government and e-government: issues, policies and recommendations. Inf. Polity 19, 5–16 (2014)

    Article  Google Scholar 

  33. Abella, A., Ortiz-De-Urbina-Criado, M., De-Pablos-Heredero, C.: A model for the analysis of data-driven innovation and value generation in smart cities’ ecosystems. Cities 64, 47–53 (2017)

    Article  Google Scholar 

  34. Poel, M., Meyer, E., Schroeder, R.: Big data for policymaking: great expectations, but with limited progress? Policy Internet 10, 347–367 (2018)

    Article  Google Scholar 

  35. Matheus, R., Janssen, M., Maheshwari, D.: Data science empowering the public: data-driven dashboards for transparent and accountable decision-making in smart cities. Gov. Inf. Q. (2018)

    Google Scholar 

Download references

Acknowledgements

This paper is a result of the project “SmartEGOV: Harnessing EGOV for Smart Governance (Foundations, Methods, Tools)/NORTE-01-0145-FEDER-000037”, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (EFDR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Al-Lawati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Lawati, A., Barbosa, L. (2019). A Framework for Intelligent Policy Decision Making Based on a Government Data Hub. In: Alexandrov, D., Boukhanovsky, A., Chugunov, A., Kabanov, Y., Koltsova, O., Musabirov, I. (eds) Digital Transformation and Global Society. DTGS 2019. Communications in Computer and Information Science, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-37858-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37858-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37857-8

  • Online ISBN: 978-3-030-37858-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics