Tropical Geometry

Part of the Foundations for Undergraduate Research in Mathematics book series (FURM)


Tropical mathematics redefines the rules of arithmetic by replacing addition with taking a maximum, and by replacing multiplication with addition. After briefly discussing a tropical version of linear algebra, we study polynomials built with these new operations. These equations define piecewise-linear geometric objects called tropical varieties. We explore these tropical varieties in two and three dimensions, building up discrete tools for studying them and determining their geometric properties. We then discuss the relationship between tropical geometry and algebraic geometry, which considers shapes defined by usual polynomial equations.


  1. 1.
    Amdeberhan, T., Medina, L. A., Moll, V. H.: Asymptotic valuations of sequences satisfying first order recurrences. Proc. Amer. Math. Soc. 137, no. 3 (2009)Google Scholar
  2. 2.
    Baker, M., Len, Y., Morrison, R., Pflueger, N., Ren, Q.: Bitangents of tropical plane quartic curves. Math. Z. 282, no. 3-4 (2016)Google Scholar
  3. 3.
    Baker, M., Norine, S.: Riemann-Roch and Abel-Jacobi theory on a finite graph. Adv. Math. 215 no. 2 (2007)Google Scholar
  4. 4.
    Balaban, A.T.: Enumeration of cyclic graphs. Chemical Applications of Graph Theory (A.T. Balaban, ed.) 63?105, Academic Press (1976)Google Scholar
  5. 5.
    Bashelor, A., Ksir, A., Traves, W.: Enumerative algebraic geometry of conics. Amer. Math. Monthly 115, no. 8 (2008)Google Scholar
  6. 6.
    Brannetti, S., Melo, M., Viviani, F.: On the tropical Torelli map. Adv. Math., 226(3) (2011)Google Scholar
  7. 7.
    Brodsky, S., Joswig, M., Morrison, R. Sturmfels, B.: Moduli of tropical plane curves. Res. Math. Sci. 2, Art. 4 (2015)Google Scholar
  8. 8.
    Butkovic̆, P.: Max-linear systems: theory and algorithms. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London (2010).Google Scholar
  9. 9.
    Cartwright, D., Dudzik, A., Manjunath, M., Yao, Y.: Embeddings and immersions of tropical curves. Collect. Math. 67, no. 1 (2016)Google Scholar
  10. 10.
    Castryck, W.: Moving out the edges of a lattice polygon. Discrete and Computational Geometry 47, no. 3 (2012)Google Scholar
  11. 11.
    Castryck, W., Voight, J.: On nondegeneracy of curves. Algebra and Number Theory 3 (2009)Google Scholar
  12. 12.
    Chan, M.: Combinatorics of the tropical Torelli map. Algebra Number Theory, 6(6) (2012)Google Scholar
  13. 13.
    Chan, M.: Tropical hyperelliptic curves. J. Algebraic Combin. 37, no. 2 (2013)Google Scholar
  14. 14.
    Chan, M., Jiradilok, P.: Theta characteristics of tropical K 4-curves. Combinatorial algebraic geometry, 65–86, Fields Inst. Commun., 80, Fields Inst. Res. Math. Sci., Toronto, ON (2017)Google Scholar
  15. 15.
    Cools, F., Draisma, J.: On metric graphs with prescribed gonality. J. Combin. Theory Ser. A 156 (2018)Google Scholar
  16. 16.
    Corry, S., Perkinson, D: Divisors and sandpiles. An introduction to chip-firing. American Mathematical Society, Providence, RI (2018)Google Scholar
  17. 17.
    Cox, D. A., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Fourth edition. Undergraduate Texts in Mathematics. Springer, Cham, xvi+646 pp. (2015)Google Scholar
  18. 18.
    de Bruijn, N. G., Erdös, P: On a combinatorial problem. Nederl. Akad. Wetensch., Proc. 51 (1948)Google Scholar
  19. 19.
    De Loera, J.A., Rambau, J., Santos, F.: Triangulations. Structures for algorithms and applications. Algorithms and Computation in Mathematics, 25. Springer-Verlag, Berlin (2010)Google Scholar
  20. 20.
    Evelyn, C. J. A., Money-Coutts, G. B.,Tyrrell, J. A.: The seven circles theorem and other new theorems. Stacey International, London (1974)zbMATHGoogle Scholar
  21. 21.
    Farouki, R.T., Neff, C., O’Conner, M.A.: Automatic parsing of degenerate quadric-surface intersections. ACM Transactions on Graphics (TOG) 8, No. 3 (1989)Google Scholar
  22. 22.
    Gathmann, A., Kerber, M.: A Riemann-Roch theorem in tropical geometry. Math. Z. 259, no. 1 (2008)Google Scholar
  23. 23.
    Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes. Polytopes-combinatorics and computation (Oberwolfach, 1997), 43–73, DMV Sem., 29, Birkhäuser, Basel (2000)Google Scholar
  24. 24.
    Giansiracusa, J., Giansiracusa, N.: Equations of tropical varieties. Duke Math. J. 165, no. 18, 3379–3433 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Grayson, D., Stillman, M. E.: Macaulay2, a software system for research in algebraic geometry. Available at
  26. 26.
    Hahn, M.A., Markwig, H., Ren, Y., Tyomkin, I.: Tropicalized quartics and canonical embeddings for tropical curves of genus 3. arXiv preprint arXiv:1802.02440 (2018)Google Scholar
  27. 27.
    Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg xvi+496 pp. (1977)Google Scholar
  28. 28.
    Hilbert, D.: Ueber die Theorie der algebraischen Formen. (German) Math. Ann. 36, no. 4 (1890)Google Scholar
  29. 29.
    Jensen, A.: Gfan, a software system for Gröbner fans and tropical varieties. Available at
  30. 30.
    Kaibel, V., Ziegler, G.M.: Counting lattice triangulations. Surveys in combinatorics, 2003 (Bangor), 277–307, London Math. Soc. Lecture Note Ser., 307, Cambridge Univ. Press, Cambridge, (2003)Google Scholar
  31. 31.
    Koelman, R.: The number of moduli of families of curves on toric surfaces. Ph.D. thesis, Katholieke Universiteit Nijmegen (1991)Google Scholar
  32. 32.
    Lagarias, J.C., Ziegler, G.M.: Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Canadian J. Math. 43 (1991)Google Scholar
  33. 33.
    Le Gall, François: Powers of tensors and fast matrix multiplication. Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC 2014)Google Scholar
  34. 34.
    Len, Y., Markwig, H..: Lifting tropical bitangents. arXiv preprint arXiv:1708.04480 (2018)Google Scholar
  35. 35.
    Len, Y., Satriano., M.: Lifting tropical self intersections. arXiv preprint arXiv:1806.01334 (2018)Google Scholar
  36. 36.
    Lengyel, T.: On the divisibility by 2 of the Stirling numbers of the second kind. Fibonacci Quart. 32, no. 3 (1994)Google Scholar
  37. 37.
    Lin, B., Tran, N. M.: Linear and rational factorization of tropical polynomials. arXiv preprint arXiv:1707.03332 (2017)Google Scholar
  38. 38.
    Maclagan, D., Rincón, F.: Tropical ideals. Compos. Math. 154, no. 3 (2018)Google Scholar
  39. 39.
    Maclagan, D., Sturmfels, B.: Introduction to tropical geometry. Graduate Studies in Mathematics, 161. American Mathematical Society, Providence, RI (2015)Google Scholar
  40. 40.
    Medina, L. A., Rowland, E.: p-regularity of the p-adic valuation of the Fibonacci sequence. Fibonacci Quart. 53, no. 3 (2015)Google Scholar
  41. 41.
    Mikhalkin, G., Zharkov, I.: Tropical curves, their Jacobians and theta functions. Curves and abelian varieties, 203–230, Contemp. Math., 465, Amer. Math. Soc., Providence, RI (2008)Google Scholar
  42. 42.
    Morrison, R.: Tropical hyperelliptic curves in the plane. arXiv preprint arXiv:1708.00571 (2017)Google Scholar
  43. 43.
    Morrison, R: Tropical images of intersection points. Collect. Math. 66, no. 2 (2015)Google Scholar
  44. 44.
    Osserman, B., Payne, S.: Lifting tropical intersections. Doc. Math. 18 (2013)Google Scholar
  45. 45.
    Osserman, B., Rabinoff, J.: Lifting nonproper tropical intersections. Tropical and non-Archimedean geometry, 15–44, Contemp. Math., 605, Centre Rech. Math. Proc., Amer. Math. Soc., Providence, RI, (2013)Google Scholar
  46. 46.
    Pick, G. A.: Geometrisches zur Zahlenlehre, Sitzenber. Lotos (Prague) 19 (1899)Google Scholar
  47. 47.
    Pin, J.: Tropical semirings. Idempotency (Bristol, 1994), 50–69, Publ. Newton Inst., 11, Cambridge Univ. Press, Cambridge (1998)Google Scholar
  48. 48.
    Plücker, J.: Solution d’une question fondamentale concernant la théorie générale des courbes. (French) J. Reine Angew. Math. 12 (1834)Google Scholar
  49. 49.
    Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry. Idempotent mathematics and mathematical physics, 289–317, Contemp. Math., 377, Amer. Math. Soc., Providence, RI (2005)Google Scholar
  50. 50.
    Rambau, J.: TOPCOM: Triangulations of Point Configurations and Oriented Matroids, Mathematical Software - ICMS 2002 (Cohen, Arjeh M. and Gao, Xiao-Shan and Takayama, Nobuki, eds.), World Scientific, pp. 330–340 (2002)Google Scholar
  51. 51.
    Scott, P.R.: On convex lattice polygons. Bull. Austral. Math. Soc. 15 (1976)Google Scholar
  52. 52.
    Simon, I.: Recognizable sets with multiplicities in the tropical semiring. Mathematical foundations of computer science, 1988 (Carlsbad, 1988), 107–120, Lecture Notes in Comput. Sci., 324, Springer, Berlin, (1988)Google Scholar
  53. 53.
    Strassen, V.: Gaussian Elimination is not Optimal. Numer. Math. 13 (1969)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Williams CollegeWilliamstownUSA

Personalised recommendations