Skip to main content

Enhancing the Flexibility of First Principles Simulations of Materials via Wavelets

  • 479 Accesses

Part of the Springer Series in Materials Science book series (SSMATERIALS,volume 296)

Abstract

We illustrate how the properties of a Daubechies wavelet basis set can be exploited to build an effective computational method that enables one to perform electronic structure calculations of systems containing up to many thousands of atoms. This is achieved by implementing a ladder of approaches of different scaling behaviours and decreasing computational complexity. We will explain that such an approach is suitable both for extended systems and for systems with molecular character. We define quantitative indicators that provide guidelines to the end-user about the pertinence of the employed methodology, thereby guaranteeing limited impact on the precision of the result. We provide a quantitative illustration of these concepts to defective systems with an extended character, by presenting the differences in computational walltime and in precision among the various methodological steps of the ladders.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-37790-8_4
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-37790-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12

References

  1. P. Hohenberg, W. Kohn, Phys. Rev. 136(3B), B864 (1964)

    CrossRef  Google Scholar 

  2. W. Kohn, L.J. Sham, Phys. Rev. 140(4A), A1133 (1965)

    CrossRef  Google Scholar 

  3. S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)

    CAS  CrossRef  Google Scholar 

  4. D.R. Bowler, T. Miyazaki, Rep. Prog. Phys. 75(3), 036503 (2012)

    CAS  CrossRef  Google Scholar 

  5. L.E. Ratcliff, S. Mohr, G. Huhs, T. Deutsch, M. Masella, L. Genovese, WIREs Comput. Mol. Sci. 7(1), e1290 (2017)

    CrossRef  Google Scholar 

  6. L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S.A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman, R. Schneider, J. Chem. Phys. 129(1), 014109 (2008)

    CrossRef  Google Scholar 

  7. I. Daubechies, Ten Lectures on Wavelets (SIAM, 1992)

    Google Scholar 

  8. A. Willand, Y.O. Kvashnin, L. Genovese, A. Vázquez-Mayagoitia, A.K. Deb, A. Sadeghi, T. Deutsch, S. Goedecker, J. Chem. Phys. 138(10), 104109 (2013)

    CrossRef  Google Scholar 

  9. E. Hernández, M.J. Gillan, Phys. Rev. B 51(15), 10157 (1995)

    CrossRef  Google Scholar 

  10. C.K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, J. Chem. Phys. 122(8), 84119 (2005)

    CrossRef  Google Scholar 

  11. D.R. Bowler, T. Miyazaki, J. Phys.: Condens. Matter 22(7), 074207 (2010)

    CAS  Google Scholar 

  12. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 167(2), 103 (2005)

    CAS  CrossRef  Google Scholar 

  13. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14(11), 2745 (2002)

    CAS  Google Scholar 

  14. S. Mohr, L.E. Ratcliff, P. Boulanger, L. Genovese, D. Caliste, T. Deutsch, S. Goedecker, J. Chem. Phys. 140(20), 204110 (2014)

    CrossRef  Google Scholar 

  15. S. Mohr, L.E. Ratcliff, L. Genovese, D. Caliste, P. Boulanger, S. Goedecker, T. Deutsch, Phys. Chem. Chem. Phys. 17, 31360 (2015)

    CAS  CrossRef  Google Scholar 

  16. L.E. Ratcliff, L. Genovese, S. Mohr, T. Deutsch, J. Chem. Phys. 142(23), 234105 (2015)

    CrossRef  Google Scholar 

  17. L.E. Ratcliff, L. Grisanti, L. Genovese, T. Deutsch, T. Neumann, D. Danilov, W. Wenzel, D. Beljonne, J. Cornil, J. Chem. Theory Comput. 11(5), 2077 (2015)

    CAS  CrossRef  Google Scholar 

  18. L.E. Ratcliff, L. Genovese, J. Phys.: Condens. Matter 31(28), 285901 (2019)

    CAS  Google Scholar 

  19. S. Mohr, M. Masella, L.E. Ratcliff, L. Genovese, J. Chem. Theory Comput. 13(9), 4079 (2017)

    CAS  CrossRef  Google Scholar 

  20. G. Wahba, SIAM Rev. 7(3), 409 (1965)

    CrossRef  Google Scholar 

  21. W. Kabsch, Acta Crystallogr. A 34(5), 827 (1978)

    CrossRef  Google Scholar 

  22. F.L. Markley, J. Astronaut. Sci. 36(3), 245 (1988)

    Google Scholar 

  23. S. Mohr, M. Eixarch, M. Amsler, M.J. Mantsinen, L. Genovese, J. Nucl. Mater. 15, 64 (2018)

    Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996)

    CAS  CrossRef  Google Scholar 

  25. C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 58, 3641 (1998)

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

LER acknowledges an EPSRC Early Career Research Fellowship (EP/P033253/1) and the Thomas Young Centre under grant number TYC-101. We are grateful to the UK Materials and Molecular Modelling Hub for computational resources, which is partially funded by EPSRC (EP/P020194/1). Calculations were also performed on the Imperial College High Performance Computing Service and the ARCHER UK National Supercomputing Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Ratcliff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ratcliff, L.E., Genovese, L. (2020). Enhancing the Flexibility of First Principles Simulations of Materials via Wavelets. In: Levchenko, E., Dappe, Y., Ori, G. (eds) Theory and Simulation in Physics for Materials Applications. Springer Series in Materials Science, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-37790-8_4

Download citation