Abstract
During the last three years, the most successful systems at the Video Browser Showdown employed effective retrieval models where raw video data are automatically preprocessed in advance to extract semantic or low-level features of selected frames or shots. This enables users to express their search intents in the form of keywords, sketch, query example, or their combination. In this paper, we present new extensions to our interactive video retrieval system VIRET that won Video Browser Showdown in 2018 and achieved the second place at Video Browser Showdown 2019 and Lifelog Search Challenge 2019. The new features of the system focus both on updates of retrieval models and interface modifications to help users with query specification by means of informative visualizations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The V3C1 dataset [18] is currently used at VBS.
- 2.
Authors of a tool are considered to be experts as they are expected to use the tool more effectively.
- 3.
References
Amato, G., et al.: VISIONE at VBS2019. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 591–596. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05716-9_51
Andreadis, S., et al.: VERGE in VBS 2019. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 602–608. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05716-9_53
Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval - The Concepts and Technology Behind Search, 2nd edn. Pearson Education Ltd., Harlow (2011)
Barthel, K.U., Hezel, N.: Visually exploring millions of images using image maps and graphs. In: Huet, B., Vrochidis, S., Chang, E. (eds.) Big Data Analytics for Large-Scale Multimedia Search, pp. 251–275. John Wiley and Sons Inc. (2019)
Cobârzan, C., et al.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimed. Tools Appl. 76(4), 5539–5571 (2017). https://doi.org/10.1007/s11042-016-3661-2
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (June 2009). https://doi.org/10.1109/CVPR.2009.5206848
Dong, J., Li, X., Snoek, C.G.M.: Predicting visual features from text for image and video caption retrieval. IEEE Trans. Multimedia 20(12), 3377–3388 (2018). https://doi.org/10.1109/TMM.2018.2832602
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org
Gurrin, C., et al.: [invited papers] Comparing approaches to interactive lifelog search at the lifelog search challenge (lsc2018). ITE Trans. Med. Technol. Appl. 7(2), 46–59 (2019). https://doi.org/10.3169/mta.7.46
Li, X., Xu, C., Yang, G., Chen, Z., Dong, J.: W2VV++: fully deep learning for ad-hoc video search. In: Proceedings of the 27th ACM International Conference on Multimedia, MM 2019, Nice, France, 21–25 October 2019, pp. 1786–1794 (2019). https://doi.org/10.1145/3343031.3350906
Lokoč, J., Bailer, W., Schoeffmann, K., Münzer, B., Awad, G.: On influential trends in interactive video retrieval: video browser showdown 2015–2017. IEEE Trans. Multimed. 20(12), 3361–3376 (2018). https://doi.org/10.1109/TMM.2018.2830110
Lokoč, J., et al.: Interactive search or sequential browsing? A detailed analysis of the video browser showdown 2018. ACM Trans. Multimed. Comput. Commun. Appl. 15(1), 29:1–29:18 (2019). https://doi.org/10.1145/3295663
Mettes, P., Koelma, D.C., Snoek, C.G.: The imagenet shuffle: Reorganized pre-training for video event detection. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, pp. 175–182. ICMR ’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2911996.2912036, http://doi.acm.org/10.1145/2911996.2912036
Lokoč, J., Kovalčík, G., Souček, T., Moravec, J., Čech, P.: A framework for effective known-item search in video. In: Proceedings of the 27th ACM International Conference on Multimedia, MM 2019, pp. 1777–1785, ACM, New York (2019). https://doi.org/10.1145/3343031.3351046
Lokoč, J., Kovalčík, G., Souček, T., Moravec, J., Čech, P.: Viret: a video retrieval tool for interactive known-item search. In: Proceedings of the 2019 on International Conference on Multimedia Retrieval, ICMR 2019, pp. 177–181. ACM, New York (2019). https://doi.org/10.1145/3323873.3325034
Nguyen, P.A., Ngo, C.-W., Francis, D., Huet, B.: VIREO @ video browser showdown 2019. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 609–615. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05716-9_54
Rossetto, L., Amiri Parian, M., Gasser, R., Giangreco, I., Heller, S., Schuldt, H.: Deep learning-based concept detection in vitrivr. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 616–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05716-9_55
Rossetto, L., Schuldt, H., Awad, G., Butt, A.A.: V3C – a research video collection. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11295, pp. 349–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05710-7_29
Schoeffmann, K., Hudelist, M.A., Huber, J.: Video interaction tools: a survey of recent work. ACM Comput. Surv. 48(1), 14:1–14:34 (2015). https://doi.org/10.1145/2808796
Schoeffmann, K., Münzer, B., Leibetseder, A., Primus, J., Kletz, S.: Autopiloting feature maps: the deep interactive video exploration (diveXplore) system at VBS2019. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 585–590. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05716-9_50
Thomee, B., Lew, M.S.: Interactive search in image retrieval: a survey. Int. J. Multimed. Inf. Retrieval 1(2), 71–86 (2012). https://doi.org/10.1007/s13735-012-0014-4
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. CoRR abs/1707.07012 (2017). http://arxiv.org/abs/1707.07012
Acknowledgments
This paper has been supported by Czech Science Foundation (GAČR) project 19-22071Y and by Charles University grant SVV-260451. We would also like to thank Přemysl Čech and Vít Škrhák for their help with interface in WPF.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lokoč, J., Kovalčík, G., Souček, T. (2020). VIRET at Video Browser Showdown 2020. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11962. Springer, Cham. https://doi.org/10.1007/978-3-030-37734-2_70
Download citation
DOI: https://doi.org/10.1007/978-3-030-37734-2_70
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37733-5
Online ISBN: 978-3-030-37734-2
eBook Packages: Computer ScienceComputer Science (R0)