Advertisement

VIREO @ Video Browser Showdown 2020

  • Phuong Anh NguyenEmail author
  • Jiaxin Wu
  • Chong-Wah Ngo
  • Danny Francis
  • Benoit Huet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11962)

Abstract

In this paper, we present the features implemented in the 4th version of the VIREO Video Search System (VIREO-VSS). In this version, we propose a sketch-based retrieval model, which allows the user to specify a video scene with objects and their basic properties, including color, size, and location. We further utilize the temporal relation between video frames to strengthen this retrieval model. For text-based retrieval module, we supply speech and on-screen text for free-text search and upgrade the concept bank for concept search. The search interface is also re-designed targeting the novice user. With the introduced system, we expect that the VIREO-VSS can be a competitive participant in the Video Browser Showdown (VBS) 2020.

Keywords

Sketch-based retrieval Query-by-object-sketch Video retrieval Video Browser Showdown 

Notes

Acknowledgments

The work described in this paper was supported by a grant from the Research Grants Council of the Hong Kong SAR, China (Reference No.: CityU 11250716), and a grant from the PROCORE-France/Hong Kong Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the Consulate General of France in Hong Kong (Reference No.: F-CityU104/17).

References

  1. 1.
    Lokoč, J., et al.: Interactive search or sequential browsing? A detailed analysis of the video browser showdown 2018. ACM Trans. Multimedia Comput. Commun. Appl. 15(1), 29:1–29:18 (2019)CrossRefGoogle Scholar
  2. 2.
    Nguyen, P.A., Ngo, C.-W., Francis, D., Huet, B.: VIREO @ video browser showdown 2019. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 609–615. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05716-9_54CrossRefGoogle Scholar
  3. 3.
    Nguyen, P.A., Lu, Y.-J., Zhang, H., Ngo, C.-W.: Enhanced VIREO KIS at VBS 2018. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 407–412. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73600-6_42CrossRefGoogle Scholar
  4. 4.
    Lokoč, J., Kovalčík, G., Souček, T.: Revisiting SIRET video retrieval tool. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 419–424. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73600-6_44CrossRefGoogle Scholar
  5. 5.
    Amato, G., et al.: VISIONE at VBS2019. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 591–596. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05716-9_51CrossRefGoogle Scholar
  6. 6.
    Rossetto, L., Amiri Parian, M., Gasser, R., Giangreco, I., Heller, S., Schuldt, H.: Deep learning-based concept detection in vitrivr. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 616–621. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05716-9_55CrossRefGoogle Scholar
  7. 7.
    Lokoč, J., Kovalčík, G., Souček, T., Moravec, J., Bodnár, J., Čech, P.: VIRET tool meets NasNet. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 597–601. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05716-9_52CrossRefGoogle Scholar
  8. 8.
    Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015)CrossRefGoogle Scholar
  9. 9.
    Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI 2017, pp. 4278–4284. AAAI Press, San Francisco (2017)Google Scholar
  10. 10.
    Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4733 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Phuong Anh Nguyen
    • 1
    Email author
  • Jiaxin Wu
    • 1
  • Chong-Wah Ngo
    • 1
  • Danny Francis
    • 2
  • Benoit Huet
    • 2
  1. 1.Computer Science DepartmentCity University of Hong KongHong KongChina
  2. 2.Data Science DepartmentEURECOMBiotFrance

Personalised recommendations