Abstract
In order to make efficient decisions in agriculture, it is imperative to analyse the weather data collected from various sources. These data are generated by automated weather stations. Unfortunately, weather observations may be missing or altered since weather stations may be stopped for maintenance or became out of order. Thus, it would affect significantly the process of data analysis. The purpose of this study is to estimate those missing values by using interpolation methods and others. We study the effectiveness of each method and compare them on different weather attributes. The methods were applied on different patterns of missing values and outliers. The experimental results prove that the two methods based on geographical proximity are performing better.
Keywords
- Weather data
- Temperature
- Rainfall
- Wind speed
- Wind direction
- Missing data
- Imputation methods
- RMSE
This is a preview of subscription content, access via your institution.
Buying options





References
Menne, M.J., Williams, C.N., Gleason, B.E., Rennie, J.J., Lawrimore, J.H.: The global historical climatology network monthly temperature dataset, version 4. J. Clim. 31, 9835–9854 (2018)
Paltasingh, K.R., Goyari, P., Mishra, R.K.: Measuring weather impact on crop yield using aridity index: evidence from Odisha. Agric. Econ. Res. Rev. 25, 205–216 (2012)
Iizumi, T., Ramankutty, N.: How do weather and climate influence cropping area and intensity? Glob. Food Secur. 4, 46–50 (2015)
Ceglar, A., Turco, M., Toreti, A., Doblas-Reyes, F.J.: Linking crop yield anomalies to large-scale atmospheric circulation in Europe. Agric. For. Meteorol. 240–241, 35–45 (2017)
Ray, D.K., Gerber, J.S., MacDonald, G.K., West, P.C.: Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 1–9 (2015)
Haworth, J., Cheng, T.: Non-parametric regression for space–time forecasting under missing data. Comput. Environ. Urban Syst. 36(6), 538–550 (2012)
Houari, R., Bounceur, A., Kechadi, M.-T., Tari, A.-K., Euler, R.: Dimensionality reduction in data mining: a copula approach. Expert Syst. Appl. 64(12), 247–280 (2016)
Kotsiantis, S., Kostoulas, A., Lykoudis, S., Argiriou, A., Menagias, K.: Filling missing temperature values in weather data banks. In: 2nd IET International Conference on Intelligent Environments (IE 2006), vol. 1, p. 327. IEE, Athens (2006)
Grzymala-Busse, J.W., Hu, M.: A comparison of several approaches to missing attribute values in data mining. In: LNAJ, vol. 2005, pp. 378–385 (2001)
Cong, R.-G., Brady, M.: The interdependence between rainfall and temperature: copula analyses. Sci. World J. 2012, 1–11 (2012)
Medori, M., Michelini, L., Nogues, I., Loreto, F., Calfapietra, C.: The impact of root temperature on photosynthesis and isoprene emission in three different plant species. Sci. World J. 2012, 10 (2012). Article ID 525827
Palomares-Salas, J.C., Agüera-Pérez, A., de la Rosa, J.J.G., Moreno-Muñoz, A.: A novel neural network method for wind speed forecasting using exogenous measurements from agriculture stations. Measurement 55, 295–304 (2014)
Hatfield, J.L., Prueger, J.H.: Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015)
Fiala, K., Tůma, I., Holub, P.: Effect of manipulated rainfall on root production and plant belowground dry mass of different grassland ecosystems. Ecosystems 12, 906–914 (2009)
Kant, S., Meshram, S., Sahu, K.C.: Analysis of rainfall data for drought investigation at Agra UP. Recent Res. Sci. Technol. 6(1), 62–64 (2014)
Ben Alaya, M.A., Chebana, F., Ouarda, T.B.M.J.: Probabilistic multisite statistical downscaling for daily precipitation using a bernoulli–generalized pareto multivariate autoregressive model. J. Clim. 28, 2349–2364 (2015)
Huang, B.Q., Rashid, T., Kechadi, M.T.: Multi-context recurrent neural network for time series applications. Int. J. Comput. Intell. 3(1), 45–55 (2006)
Sophia, K., Kanchi, R.R.: Wind speed and direction measurement system using Atmel 89S51 microcontroller. In: International Conference on Inventive Computation Technologies, pp. 1–6 (2016)
De Silva, R.P., Dayawansa, N.D.K., Ratnasiri, M.D.: A comparison of methods used in estimating missing rainfall data. J. Agric. Sci. 3(May), 101–108 (2007)
Jahan, F., Sinha, N.C., Rahman, Md.M., Rahman, Md.M., Mondal, Md.S.H., Islam, M.A.: Comparison of missing value estimation techniques in rainfall data of Bangladesh. Theor. Appl. Climatol. 136, 1115–1131 (2019)
Suhalia, J., Sayang, M.D., Jemain, A.A.: Revised spatial weighting methods for estimation of missing rainfall data. Asia-Pac. J. Atmos. Sci. 44(2), 93–104 (2008)
Sattari, M.-T., Rezazadeh-Joudi, A., Kusiak, A.: Assessment of different methods for estimation of missing data in precipitation studies. Hydrol. Res. 48, 1032–1044 (2017)
Bonan, G.B., Doney, S.C.: Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, eaam8328 (2018)
Liu, S., Su, H., Tian, J., Zhang, R., Wang, W., Wu, Y.: Evaluating four remote sensing methods for estimating surface air temperature on a regional scale. J. Appl. Meteorol. Climatol. 56, 803–814 (2017)
Stahl, K., Moore, R., Floyer, J., Asplin, M., McKendry, I.: Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric. For. Meteorol. 139, 224–236 (2006)
Rahman, M.G., Islam, M.Z.: A decision tree based missing value imputation technique for data preprocessing. In: Proceedings of the Ninth Australasian Data Mining Conference, Ballarat, pp. 41–50 (2011)
Yozgatligil, C., Aslan, S., Iyigun, C., Batmaz, I.: Comparison of missing value imputation methods in time series: the case of turkish meteorological data. Theor. Appl. Climatol. 112(1–2), 143–167 (2013)
Zahrah, S.N., Burhanuddin, A., Mohad Deni, S., Mohamed Ramli, N.: Revised normal ratio methods for imputation of missing rainfall data. Sci. Res. J. 13(1), 83 (2016)
Burhanuddin, S.N.Z.A.: Normal ratio in multiple imputation based on bootstrapped sample for rainfall data with missingness. Int. J. GEOMATE 13, 131–137 (2017)
Eskelson, B.N.I., Temesgen, H., Lemay, V., Barrett, T.M., Crookston, N.L., Hudak, A.T.: The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases. Scand. J. For. Res. 24, 235–246 (2009)
Bárdossy, A., Pegram, G.: Infilling missing precipitation records – a comparison of a new copula-based method with other techniques. J. Hydrol. 519(November 2014), 1162–1170 (2014)
Kanda, N., Negi, H.S., Rishi, M.S., Shekhar, M.S.: Performance of various techniques in estimating missing climatological data over snowbound mountainous areas of Karakoram Himalaya: estimation of missing climate data over mountainous areas. Meteorol. Appl. 25, 337–349 (2018)
Acknowledgements
This research forms part of the CONSUS Programme which is funded under the SFI Strategic Partnerships Programme (16/SPP/3296) and is co-funded by Origin Enterprises Plc.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Rafii, F., Kechadi, T. (2020). Historical Weather Data Recovery and Estimation. In: Ben Ahmed, M., Boudhir, A., Santos, D., El Aroussi, M., Karas, İ. (eds) Innovations in Smart Cities Applications Edition 3. SCA 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-37629-1_85
Download citation
DOI: https://doi.org/10.1007/978-3-030-37629-1_85
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37628-4
Online ISBN: 978-3-030-37629-1
eBook Packages: EngineeringEngineering (R0)