Skip to main content

Applying External Guidance Commands to Deep Reinforcement Learning for Autonomous Driving

  • Conference paper
  • First Online:
Innovations in Smart Cities Applications Edition 3 (SCA 2019)

Abstract

End-to-end deep reinforcement learning [1] algorithms used in autonomous car field and trained on lane-keeping task achieve good results in roads that don’t require decision making but cannot deal with situations where getting driving direction is mandatory like choosing to turn left or right in an upcoming crossroads, deciding when to leave a traffic circle or toward which path/destination to go. In this paper we introduce a new Deep Reinforcement Learning model that enable to integrate guidance commands at test time as a complementary input that indicate the right direction, that we call Deep Reinforcement Learning with guidance (DRLG), we apply the DRLG architecture on two algorithms, the asynchronous advantage actor-critic A3C and the Deep Deterministic Policy Gradient algorithm DDPG. For the training and experimentations of the new model, we adopt the CARLA virtual environment, a High-fidelity realistic driving simulator as a testbed since leading driving tests in the real world turns out to be neither safe nor affordable in term of materials and requirements. The results of testing show that DDPG and A3C with Guidance (DDPGG and A3CG) models succeed on their driving task through roads/roundabouts, by being appropriately responsive to the external commands, which allow to the autonomous car to follow the indicated route and take the right turns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attia, A., Dayan, S.: Global overview of imitation learning (2018). arXiv:180106503 [cs]

  2. Bansal, M., Krizhevsky, A., Ogale, A.: ChauffeurNet: learning to drive by imitating the best and synthesizing the worst (2018). arXiv:181203079 [cs]

  3. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for self-driving cars (2016). arXiv:160407316 [cs]

  4. Celemin, C., Ruiz-del-Solar, J.: An interactive framework for learning continuous actions policies based on corrective feedback (2018). https://doi.org/10.1007/s10846-018-0839-z

  5. Celemin, C., Ruiz-del-Solar, J., Kober, J.: A fast hybrid reinforcement learning framework with human corrective feedback (2019). https://doi.org/10.1007/s10514-018-9786-6

  6. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: learning affordance for direct perception in autonomous driving. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 2722–2730. IEEE (2015)

    Google Scholar 

  7. Codevilla, F., MĂĽller, M., LĂłpez, A., Koltun, V., Dosovitskiy, A.: End-to-end driving via conditional imitation learning (2017). arXiv:171002410 [cs]

  8. Dosovitskiy, A., Koltun, V.: Learning to act by predicting the future (2016). arXiv:161101779 [cs]

  9. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator (2017). arXiv:171103938 [cs]

  10. Fenjiro, Y., Benbrahim, H.: Deep reinforcement learning overview of the state of the art. JAMRIS 12, 20–39 (2018). https://doi.org/10.14313/JAMRIS_3-2018/15

    Article  Google Scholar 

  11. Fridman, L., Terwilliger, J., Jenik, B.: DeepTraffic: crowdsourced hyperparameter tuning of deep reinforcement learning systems for multi-agent dense traffic navigation (2018). arXiv:180102805 [cs]

  12. Aghdam, H.H., Heravi, E.J.: Guide to convolutional neural networks a practical application to traffic-sign detection and classification. Springer

    Google Scholar 

  13. Henein, M., Kennedy, G., Ila, V., Mahony, R.: Simultaneous localization and mapping with dynamic rigid objects (2018). arXiv:180503800 [cs]

  14. Javaid, A.: Understanding Dijkstra algorithm. SSRN Electron. J. (2013). https://doi.org/10.2139/ssrn.2340905

    Article  Google Scholar 

  15. Kılıç, İ., Yazıcı, A., Yıldız, Ö., Özçelikors, M., Ondoğan, A.: Intelligent adaptive cruise control system design and implementation. In: 2015 10th SoSE Conference, pp 232–237 (2015)

    Google Scholar 

  16. Kocic, J., Jovicic, N., Drndarevic, V.: Driver behavioral cloning using deep learning (2018)

    Google Scholar 

  17. Pananurak, W., Thanok, S., Parnichkun, M.: pp. 1794–1799 (2009)

    Google Scholar 

  18. Pizarro, D., Mazo, M., Santiso, E., Marron, M., Jimenez, D., Cobreces, S., Losada, C.: Localization of mobile robots using odometry and an external vision sensor. Sensors 10, 3655–3680 (2010). https://doi.org/10.3390/s100403655

    Article  Google Scholar 

  19. Pomerleau, D.A.: ALVINN: an autonomous land vehicle in a neural network. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems 1 (1989)

    Google Scholar 

  20. Reddy, S., Dragan, A.D., Levine, S.: Shared autonomy via deep reinforcement learning (2018). arXiv:180201744 [cs]

  21. Rosencrantz, M., Gordon, G., Thrun, S.: Decentralized sensor fusion with distributed particle filters (2012). arXiv:12122493 [cs]

  22. Ross, S., Gordon, G.J., Bagnell, J.A.: A reduction of imitation learning and structured prediction to no-regret online learning (2010). arXiv:10110686 [cs, stat]

  23. Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: Proceedings of the 6th International Conference on Experimental Algorithms, pp. 23–36. Springer, Berlin (2007)

    Google Scholar 

  24. Sasiadek, J., Hartana, P.: Sensor data fusion using Kalman filter (2000)

    Google Scholar 

  25. Schratter, M., Bouton, M., Kochenderfer, M.J., Watzenig, D.: Pedestrian collision avoidance system for scenarios with occlusions (2019). arXiv:190411566 [cs]

  26. Wymann, B., Dimitrakakis, C., Sumner, A., Espie, E., Guionneau, C.: TORCS: open racing car

    Google Scholar 

  27. Zou, Q., Jiang, H., Dai, Q., Yue, Y., Chen, L., Wang, Q.: Robust lane detection from continuous driving scenes using deep neural networks (2019). arXiv:190302193 [cs]

  28. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fenjiro Youssef or Benbrahim Houda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Youssef, F., Houda, B. (2020). Applying External Guidance Commands to Deep Reinforcement Learning for Autonomous Driving. In: Ben Ahmed, M., Boudhir, A., Santos, D., El Aroussi, M., Karas, Ä°. (eds) Innovations in Smart Cities Applications Edition 3. SCA 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-37629-1_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37629-1_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37628-4

  • Online ISBN: 978-3-030-37629-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics