Skip to main content

Learning Scale and Shift-Invariant Dictionary for Sparse Representation

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11943))

  • 1908 Accesses

Abstract

Sparse representation is a signal model to represent signals with a linear combination of a small number of prototype signals called atoms, and a set of atoms is called a dictionary. The design of the dictionary is a fundamental problem for sparse representation. However, when there are scaled or translated features in the signals, unstructured dictionary models cannot extract such features. In this paper, we propose a structured dictionary model which is scale and shift-invariant to extract features which commonly appear in several scales and locations. To achieve both scale and shift invariance, we assume that atoms of a dictionary are generated from vectors called ancestral atoms by scaling and shift operations, and an algorithm to learn these ancestral atoms is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B 58, 267–288 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  Google Scholar 

  3. Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity: The Lasso and Generalizations. Chapman & Hall/CRC, Boca Raton (2015)

    Book  Google Scholar 

  4. Olshausen, B.A., et al.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  5. Engan, K., Aase, S.O., Husoy, J.H.: Method of optimal directions for frame design. In: 1999 Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2443–2446 (1999)

    Google Scholar 

  6. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  7. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 689–696. ACM, New York (2009)

    Google Scholar 

  8. Barzideh, F., Skretting, K., Engan, K.: Imposing shift-invariance using flexible structure dictionary learning (FSDL). Digit. Sig. Proc. 69, 162–173 (2017)

    Article  Google Scholar 

  9. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. Multiscale Model. Simul. 7(1), 214–241 (2008)

    Article  MathSciNet  Google Scholar 

  10. Shen, Y., Xiong, H., Dai, W.: Multiscale dictionary learning for hierarchical sparse representation. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 1332–1337, July 2017

    Google Scholar 

  11. Grandits, T., Pock, T.: Optimizing wavelet bases for sparser representations. In: Pelillo, M., Hancock, E. (eds.) EMMCVPR 2017. LNCS, vol. 10746, pp. 249–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78199-0_17

    Chapter  Google Scholar 

  12. Olshausen, B.A., Sallee, P., Lewicki, M.S.: Learning sparse image codes using a wavelet pyramid architecture. In: Advances in Neural Information Processing Systems, NIPS 2000, Denver, CO, USA, vol. 13, pp. 887–893 (2000)

    Google Scholar 

  13. Aritake, T., Hino, H., Murata, N.: Learning ancestral atom via sparse coding. IEEE J. Sel. Top. Sig. Process. 7(4), 586–594 (2013)

    Article  Google Scholar 

  14. Zheng, G., Yang, Y., Carbonell, J.: Efficient shift-invariant dictionary learning. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 2095–2104. ACM, New York (2016)

    Google Scholar 

  15. Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vis. Res. 20(10), 847–856 (1980)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by JST CREST Grant Number JPMJCR1761 and JSPS KAKENHI Grant Numbers JP17H01793, JP18H03291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimitsu Aritake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aritake, T., Murata, N. (2019). Learning Scale and Shift-Invariant Dictionary for Sparse Representation. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2019. Lecture Notes in Computer Science(), vol 11943. Springer, Cham. https://doi.org/10.1007/978-3-030-37599-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37599-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37598-0

  • Online ISBN: 978-3-030-37599-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics