Skip to main content

Uniformly Most-Reliable Graphs and Antiholes

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11943))

  • 1722 Accesses

Abstract

In network design, the all-terminal reliability maximization is of paramount importance. In this classical setting, we assume a simple graph with perfect nodes but independent link failures with identical probability \(\rho \). The goal is to communicate p terminals using q links, in such a way that the connectedness probability of the resulting random graph is maximum. A graph with p nodes and q links that meets the maximum reliability property is called uniformly most-reliable (pq)-graph (UMRG). The discovery of these graphs is a challenging problem that involves an interplay between extremal graph theory and computational optimization. Recent works confirm the existence of special cubic UMRG, such as Wagner, Petersen and Yutsis graphs. To the best of our knowledge, there is no prior works from the literature that find 4-regular UMRG. In this paper, we revisit the breakthroughs in the theory of UMRG. Finally, we mathematically prove that the complement of a cycle with seven nodes, \(\overline{C_7}\), is a 4-regular UMRG. This graph is also identified as an odd antihole using terms from perfect graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer, D., Boesch, F., Suffel, C., Van Slyke, R.: On the validity of a reduction of reliable network design to a graph extremal problem. IEEE Trans. Circuits Syst. 34(12), 1579–1581 (1987)

    Article  Google Scholar 

  2. Bauer, D., Boesch, F., Suffel, C., Tindell, R.: Combinatorial optimization problems in the analysis and design of probabilistic networks. Networks 15(2), 257–271 (1985)

    Article  MathSciNet  Google Scholar 

  3. Biggs, N.: Algebraic Graph Theory. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  4. Boesch, F.T.: On unreliability polynomials and graph connectivity in reliable network synthesis. J. Graph Theory 10(3), 339–352 (1986)

    Article  MathSciNet  Google Scholar 

  5. Boesch, F.T., Li, X., Suffel, C.: On the existence of uniformly optimally reliable networks. Networks 21(2), 181–194 (1991)

    Article  MathSciNet  Google Scholar 

  6. Boesch, F.T., Satyanarayana, A., Suffel, C.L.: A survey of some network reliability analysis and synthesis results. Networks 54(2), 99–107 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bollobás, B.: Extremal Graph Theory. Dover Books on Mathematics, Dover Publications (2004)

    Google Scholar 

  8. Bourel, M., Canale, E., Robledo, F., Romero, P., Stábile, L.: A Hybrid GRASP/VND heuristic for the design of highly reliable networks. In: Blesa Aguilera, M.J., Blum, C., Gambini Santos, H., Pinacho-Davidson, P., Godoy del Campo, J. (eds.) HM 2019. LNCS, vol. 11299, pp. 78–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05983-5_6

    Chapter  Google Scholar 

  9. Canale, E., Robledo, F., Romero, P., Viera, J.: Building reliability-improving network transformations. In: 2019 15th International Conference on Design of Reliable Communication Networks (DRCN 2019), Coimbra, Portugal, March 2019

    Google Scholar 

  10. Cheng, C.-S.: Maximizing the total number of spanning trees in a graph: two related problems in graph theory and optimum design theory. J. Comb. Theory Ser. B 31(2), 240–248 (1981)

    Article  MathSciNet  Google Scholar 

  11. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press Inc., New York (1987)

    Google Scholar 

  12. Harary, F.: The maximum connectivity of a graph. Proc. Nat. Acad. Sci. U.S.A. 48(7), 1142–1146 (1962)

    Article  MathSciNet  Google Scholar 

  13. Kelmans, A.: On graphs with the maximum number of spanning trees. Random Struct. Algorithms 9(1–2), 177–192 (1996)

    Article  MathSciNet  Google Scholar 

  14. Kelmans, A.K., Chelnokov, V.M.: A certain polynomial of a graph and graphs with an extremal number of trees. J. Comb. Theory Ser. B 16(3), 197–214 (1974)

    Article  MathSciNet  Google Scholar 

  15. Kirchhoff, G.: Über die auflösung der gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  16. Knuth, D.E.: The art of computer programming: introduction to combinatiorial algorithms and Boolean functions. In: Addison-Wesley Series in Computer Science and Information Proceedings, Addison-Wesley (2008)

    Google Scholar 

  17. Leggett, J.D., Bedrosian, S.D.: On networks with the maximum numbers of trees. In: Proceedings of Eighth Midwest Symposium on Circuit Theory, pp. 1–8, June 1965

    Google Scholar 

  18. Myrvold, W.: Reliable network synthesis: some recent developments. In: Proceedings of the Eighth International Conference on Graph Theory, Combinatorics, Algorithms and Applications, vol. II, pp. 650–660 (1996)

    Google Scholar 

  19. Myrvold, W., Cheung, K.H., Page, L.B., Perry, J.E.: Uniformly-most reliable networks do not always exist. Networks 21(4), 417–419 (1991)

    Article  MathSciNet  Google Scholar 

  20. Petingi, L., Boesch, F., Suffel, C.: On the characterization of graphs with maximum number of spanning trees. Discrete Math. 179(1), 155–166 (1998)

    Article  MathSciNet  Google Scholar 

  21. Rela, G., Robledo, F., Romero, P.: Petersen graph is uniformly most-reliable. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R. (eds.) MOD 2017. LNCS, vol. 10710, pp. 426–435. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72926-8_35

    Chapter  Google Scholar 

  22. Wang, G.: A proof of Boesch’s conjecture. Networks 24(5), 277–284 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Projects 395 CSIC I+D Sistemas Binarios Estocásticos Dinámicos, COST Action 15127 Resilient communication services protecting end-user applications from disaster-based failures, Math-AMSUD Raredep Rare events analysis in multi-component systems with dependent components and STIC-AMSUD ACCON, Algorithms for the capacity crunch problem in optical networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rela, G., Robledo, F., Romero, P. (2019). Uniformly Most-Reliable Graphs and Antiholes. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2019. Lecture Notes in Computer Science(), vol 11943. Springer, Cham. https://doi.org/10.1007/978-3-030-37599-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37599-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37598-0

  • Online ISBN: 978-3-030-37599-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics