Skip to main content

A Method for Applying Antipatterns and Neural Networks to Automate Detection of Errors in Designs of Mechanical Constructions

  • Conference paper
  • First Online:
Innovations Induced by Research in Technical Systems (IIRTS 2019)

Abstract

Proposed method allows for early detection of mistakes in designs of mechanical constructions. It is based on a numerical classification of a symbolic representation of construction’s features against a set of defined antipatterns (known, incorrect, repeatable data patterns). We present an approach to identify antipatterns described using a symbolic language KXML and a method of intelligent quality assessment enabling calculation of the similarity of the tested element with the antipattern data set. Additionally, we highlight selected properties of numerical models directly supporting analysis of the structure of mechanical constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duer, S.: Diagnostic system with an artificial neural network in diagnostics of an analogue technical object. Neural Comput. Appl. 19(1), 55–60 (2010)

    Article  Google Scholar 

  2. Duer, S.: Diagnostic system for the diagnosis of a reparable technical object, with the use of an artificial neural network of RBF type. Neural Comput. Appl. 19(5), 691–700 (2010)

    Article  Google Scholar 

  3. Duer, S., Duer, R.: Diagnostic system with an artificial neural network which determines a diagnostic information for the servicing of a reparable technical object. Neural Comput. Appl. 19(5), 755–766 (2010)

    Article  Google Scholar 

  4. Duer, S.: Artificial neural network in the control process of object’s states basis for organization of a servicing system of a technical objects. Neural Comput. Appl. 21(1), 153–160 (2012)

    Article  Google Scholar 

  5. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  Google Scholar 

  6. Lippmann, R.P., Gold, B., Malpass, M.L.: A comparison of Hamming and Hopfield neural nets for pattern classification. Massachusetts Institute of Technology, Lincoln Laboratory (1987)

    Google Scholar 

  7. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, Burlington (1988)

    MATH  Google Scholar 

  8. Weld, D.S., de Kleer, J.: Readings in Qualitative Reasoning About Physical Systems. Morgan Kaufmann Publishers, Burlington (1990)

    Google Scholar 

  9. Koenig, A.: Patterns and antipatterns. J. Object-Oriented Program. 08, 46–48 (1995)

    Google Scholar 

  10. Lung-Wen, T.: Mechanism Design: Enumeration of kinematic Structures According to Function. CRC Press, Boca Raton (2001)

    Google Scholar 

  11. Knosala, R.: Applications of artificial intelligence methods in production engineering. WNT, Warsaw (2002). (in Polish)

    Google Scholar 

  12. Vazirani, V.V.: Approximation algorithms. WNT, Warsaw (2005). (in Polish)

    Google Scholar 

  13. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  14. Zhou, Y., Cheng, H., Xu Yu, J.: Graph clustering based on structural/attribute similarities. J. Proc. VLDB Endow. 2(1), 718–729 (2009)

    Article  Google Scholar 

  15. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  16. Fei-wei, Q., Lu-ye, L., Shu-ming, G., Xiao-ling, Y., Xiang, C.: A deep learning approach to the classification of 3D CAD models. J. Zhejiang Univ. Sci. 15(2), 91–106 (2014)

    Article  Google Scholar 

  17. Tuchołka, A., Majewski, M., Kacalak, W.: Object-oriented, symbolic notation for design features, relations and structures. Mach. Eng. 1(20), 112–120 (2015)

    Google Scholar 

  18. Kacalak, W., Majewski, M., Tuchołka, A.: Intelligent assessment of structure correctness using antipatterns. In: The Proceedings of the International Conference on Computational Science and Computational Intelligence CSCI’2015, Las Vegas, pp. 559–564. IEEE Xplore Digital Library (2015)

    Google Scholar 

  19. Kacalak, W., Majewski, M., Tuchołka, A.: A method of object-oriented symbolical description and evaluation of machine elements using antipatterns. J. Mach. Eng. 16(4), 46–69 (2016)

    Google Scholar 

  20. Sabour, S., Frost, N., Hinton, G.E.: Dynamic routing between capsules. Computer Vision and Pattern Recognition. arXiv:1710.09829 (2017)

  21. Tuchołka, A., Majewski, M., Kacalak, W., Budniak, Z.: A method for intelligent quality assessment of a gearbox using antipatterns and convolutional neural networks. In: Silhavy, R. (ed.) CSOC 2018. Advances in Intelligent Systems and Computing, vol. 764, pp. 57–68. Springer, Cham. (2018)

    Google Scholar 

  22. Tuchołka, A., Majewski, M., Kacalak, W., Budniak, Z.: Comparison of numerical models used for automated analysis of mechanical structures. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) CoMeSySo 2018. Advances in Intelligent Systems and Computing, vol. 859, pp. 341–352. Springer, Cham. (2019)

    Google Scholar 

  23. Kacalak, W., Majewski, M., Budniak, Z.: Worm gear drives with adjustable backlash. J. Mech. Robot. 8(1), 014504 (2015)

    Article  Google Scholar 

  24. Kacalak, W., Majewski, M., Budniak, Z.: Innovative design of non-backlash worm gear drives. Arch. Civil Mech. Eng. 18(3), 983–999 (2018)

    Article  Google Scholar 

  25. Majewski, M., Kacalak, W.: Smart control of lifting devices using patterns and antipatterns. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds.) CSOC 2017. Advances in Intelligent Systems and Computing, vol. 573, pp. 486–493. Springer, Cham (2017)

    Google Scholar 

  26. Kacalak, W., Budniak, Z., Majewski, M.: Computer aided analysis of the mobile crane handling system using computational intelligence methods. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) CoMeSySo 2017. Advances in Intelligent Systems and Computing, vol. 662, pp. 250–261. Springer, Cham (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Tuchołka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tuchołka, A., Majewski, M., Kacalak, W., Budniak, Z. (2020). A Method for Applying Antipatterns and Neural Networks to Automate Detection of Errors in Designs of Mechanical Constructions. In: Majewski, M., Kacalak, W. (eds) Innovations Induced by Research in Technical Systems. IIRTS 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-37566-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37566-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37565-2

  • Online ISBN: 978-3-030-37566-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics