Skip to main content

Influence of Oxygen Vacancies in Gas Sensors Based on Metal-Oxide Semiconductors: A First-Principles Study

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 629))

Abstract

Despite advantages highlighted by MOX-based gas sensors, these devices still show drawbacks in their performances (e.g. selectivity and stability), so further investigations are necessary. SnO2 is the most used semiconductor for chemoresistive gas sensors production due to its broad spectrum of physical-chemical properties, and then it represents the best candidate for the innovative work here proposed. Indeed, among the gaps in research on this material, it is placed the study of oxygen deficiency and its impact on the tin dioxide physicochemical properties. A series of first-principles study was carried out in order to study the impact of oxygen vacancies on the physical-chemical properties of SnO2. The results showed a high electrical conductivity for the samples with oxygen vacancies, which can give a decrease of the operating temperature that sensing material needs to be thermo-activated. The arrangement of the impurity states is one of the important parameters that involve the reactions on the material surface, making the excitation of weakly bound valence electrons into the unoccupied energy levels in the conduction bands.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79(2–4):47–154

    Article  ADS  Google Scholar 

  2. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 10(3):2088–2106

    Article  Google Scholar 

  3. Schwarz K (2003) DFT calculations of solids with LAPW and WIEN2k. J Solid-State Chem 176(2):319–328

    Article  ADS  Google Scholar 

  4. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244–13249

    Article  ADS  Google Scholar 

  5. Langreth DC, Mehl MJ (1983) Beyond the local-density approximation in calculations of ground-state electronic properties. Phys Rev B 28(4):1809–1834

    Article  ADS  Google Scholar 

  6. Chikr ZC, Mokadem A, Bouslama M, Besahraoui F, Ghaffour M, Ouerdane A, Boulenouar K, Chauvin N, Benrabah B (2013) The investigation of the electron behavior of SnO2 by the simulation methods GGA and mBJ associated with the eels experimental analysis technique. Surf Rev Lett 20(5):art. no. 1350050

    Article  ADS  Google Scholar 

  7. Dufek P, Blaha P, Schwarz K (1994) Applications of Engel and Voskos generalized gradient approximation in solids. Phys Rev B 50(11):7279–7283

    Article  ADS  Google Scholar 

  8. Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys 123(17):art. no. 174101

    Article  ADS  Google Scholar 

  9. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102(22):art. no. 226401

    Google Scholar 

  10. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  ADS  MathSciNet  Google Scholar 

  11. Singh DJ, Nordstrom L (2006) Planewaves, pseudopotentials and the LAPW method, 2nd edn. Springer, New York, NY, pp 1–134

    Google Scholar 

  12. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J, Laskowski R, Tran F, Marks LD (2018) WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz Techn. Universität, Wien, Austria. ISBN 3-9501031-1-2

    Google Scholar 

  13. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  ADS  Google Scholar 

  14. Allen PB (1996) Boltzmann theory and resistivity of metals. In: Chelikowsky JR, Louie SG (eds) Quantum theory of real materials. Kluwer, Boston, pp 219–250

    Chapter  Google Scholar 

  15. Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175(1):67–71

    Article  ADS  Google Scholar 

  16. Bolzan AA, Fong C, Kennedy BJ, Howard CJ (1997) Structural studies of rutile-type metal dioxides. Acta Crystallogr Sect B: Struct Sci 53(3):373–380

    Article  Google Scholar 

  17. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Article  ADS  MathSciNet  Google Scholar 

  18. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci 30(9):244–247. https://doi.org/10.1073/pnas.30.9.244

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chetri P, Choudhury A (2013) Investigation of optical properties of SnO2 nanoparticles. Physica E 47:257–263

    Article  ADS  Google Scholar 

  20. Haines J, Léger J (1997) X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: relationships between structure types and implications for other rutile-type dioxides. Phys Rev B: Condens Matter Mater Phys 55(17):11144–11154

    Article  ADS  Google Scholar 

  21. Zhu B, Liu C-M, Lv M-B, Chen X-R, Zhu J, Ji G-F (2011) Structures, phase transition, elastic properties of SnO2 from first-principles analysis. Physica B: Condens Matter 406(18):3508–3513

    Article  ADS  Google Scholar 

  22. Godinho Kate G, Walsh A, Watson GW (2009) Energetic and electronic structure analysis of intrinsic defects in SnO2. J Phys Chem C 113(1):439–448

    Article  Google Scholar 

  23. Zupan A, Causà M (1995) Density functional LCAO calculations for solids: comparison among Hartree-Fock, DFT local density approximation, and DFT generalized gradient approximation structural properties. Int J Quantum Chem 56(4):337–344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soufiane Krik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krik, S. et al. (2020). Influence of Oxygen Vacancies in Gas Sensors Based on Metal-Oxide Semiconductors: A First-Principles Study. In: Di Francia, G., et al. Sensors and Microsystems. AISEM 2019. Lecture Notes in Electrical Engineering, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-030-37558-4_47

Download citation

Publish with us

Policies and ethics