Skip to main content

Particle Filter for Trajectories of Movers from Laser Scanned Dataset

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (MedPRAI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1144))

Abstract

Laser scanner takes away the problem of private life conservation as it does not record real world videos except scanned data points. So it shows many benefits over the use of video camera. This paper portrays an approach to detect and track movers from laser scanned datasets. Laser scanned data points from each scan are deemed as a video frame. Blobs are extracted from each frame. Support vector machine (SVM) and Hungarian method along with particle filter are used to get trajectories of movers. Experimental results on the identical laser scanned dataset demonstrate that the approach of SVM with Hungarian method using particle filter outperforms both the threshold based approach with Hungarian method using Kalman filter and the approach of SVM with Hungarian method using Kalman filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharif, M.H., Djeraba, C.: PedVed: pseudo euclidian distances for video events detection. In: Bebis, G., et al. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 674–685. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10520-3_64

    Chapter  Google Scholar 

  2. Sharif, M.H.U., Uyaver, S., Sharif, M.H.: Ordinary video events detection. In: CompIMAGE, pp. 19–24 (2012)

    Google Scholar 

  3. Ihaddadene, N., Sharif, M.H., Djeraba, C.: Crowd behaviour monitoring. In: International Conference on Multimedia, pp. 1013–1014 (2008)

    Google Scholar 

  4. Mahmoudi, S.A., Sharif, M.H., Ihaddadene, N., Djeraba, C.: Abnormal event detection in real time video. In: International Workshop on Multimodal Interactions Analysis of Users in a Controlled Environment, ICMI, pp. 1–4 (2008)

    Google Scholar 

  5. Sharif, M.H., Djeraba, C.: A simple method for eccentric event espial using mahalanobis metric. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 417–424. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10268-4_48

    Chapter  Google Scholar 

  6. Sharif, M.H., Djeraba, C.: Exceptional motion frames detection by means of spatiotemporal region of interest features. In: ICIP, pp. 981–984 (2009)

    Google Scholar 

  7. Sharif, M.H., Uyaver, S., Djeraba, C.: Crowd behavior surveillance using Bhattacharyya distance metric. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 311–323. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12712-0_28

    Chapter  Google Scholar 

  8. Sharif, M.H., Ihaddadene, N., Djeraba, C.: Finding and indexing of eccentric events in video emanates. J. Multimedia 5(1), 22–35 (2010)

    Article  Google Scholar 

  9. Sharif, M.H., Djeraba, C.: An entropy approach for abnormal activities detection in video streams. Pattern Recogn. 45(7), 2543–2561 (2012)

    Article  Google Scholar 

  10. Surmann, H., Nuchter, A., Hertzberg, J.: An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robot. Auton. Syst. 45(3), 181–198 (2003)

    Article  Google Scholar 

  11. Wang, C.C., Thorpe, C., Suppe, A.: Ladar-based detection and tracking of moving objects from a ground vehicle at high speeds. In: Intelligent Vehicles Symposium, pp. 416–421 (2003)

    Google Scholar 

  12. Mendes, A., Nunes, U.: Situation-based multi-target detection and tracking with laser scanner in outdoor semi-structured environment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 88–93 (2004)

    Google Scholar 

  13. Vosselman, G., Gorte, B.G., Sithole, G., Rabbani, T.: Recognising structure in laser scanner point clouds. Int. Arch. photogramm. Remote Sens. Spat. Inf. Sci. 46(8), 33–38 (2004)

    Google Scholar 

  14. Nakamura, K., Zhao, H., Shibasaki, R., Sakamoto, K., Ooga, T., Suzukawa, N.: Tracking pedestrians by using multiple laser range scanners. In: International Society for Photogrammetry and Remote Sensing (ISPRS) Congress, vol. 35, B4, pp. 1260–1265 (2004)

    Google Scholar 

  15. Topp, E., Christensen, H.: Tracking for following and passing persons. In: IEEE/RSJ IROS, pp. 2321–2327 (2005)

    Google Scholar 

  16. Xavier, J., Pacheco, M., Castro, D., Ruano, A., Nunes, U.: Fast line, arc/circle and leg detection from laser scan data in a player driver. In: ICRA, pp. 3930–3935 (2005)

    Google Scholar 

  17. Zhao, H., Shibasaki, R.: A novel system for tracking pedestrians using multiple single-row laser-range scanners. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 35(2), 283–291 (2005)

    Article  Google Scholar 

  18. Cui, J., Zha, H., Zhao, H., Shibasaki, R.: Robust tracking of multiple people in crowds using laser range scanners. In: ICPR, pp. 857–860 (2006)

    Google Scholar 

  19. Zhao, H., Shao, X., Katabira, K., Shibasaki, R.: Joint tracking and classification of moving objects at intersection using a single-row laser range scanner. In: Intelligent Transportation Systems Conference (ITSC), pp. 287–294 (2006)

    Google Scholar 

  20. Serment, L.E.N., Mertz, C., Hebert, M.: Predictive mover detection and tracking in cluttered environments. In: Army Science Conference (ASC) (2006)

    Google Scholar 

  21. Arras, K., Mozos, O., Burgard, W.: Using boosted features for the detection of people in 2D range data. In: ICRA, pp. 3402–3407 (2007)

    Google Scholar 

  22. Shao, X., Zhao, H., Nakamura, K., Katabira, K., Shibasaki, R., Nakagawa, Y.: Detection and tracking of multiple pedestrians by using laser range scanners. In: IEEE/RSJ IROS, pp. 2174–2179 (2007)

    Google Scholar 

  23. Cui, J., Zha, H., Zhao, H., Shibasaki, R.: Laser-based detection and tracking of multiple people in crowds. CVIU 106(2–3), 300–312 (2007)

    Google Scholar 

  24. Zhao, H., Chiba, M., Shibasaki, R., Shao, X., Cui, J., Zha, H.: A laser-scanner-based approach toward driving safety and traffic data collection. Trans. Intell. Transp. 10(3), 534–546 (2009)

    Article  Google Scholar 

  25. Arras, K., Grzonka, S., Luber, M., Burgard, W.: Efficient people tracking in laser range data using a multi-hypothesis leg-tracker with adaptive occlusion probabilities. In: ICRA, pp. 1710–1715 (2008)

    Google Scholar 

  26. Song, X., Cui, J., Wang, X., Zhao, H., Zha, H.: Tracking interacting targets with laser scanner via on-line supervised learning. In: ICRA, pp. 2271–2276 (2008)

    Google Scholar 

  27. Vu, T.D., Aycard, O.: Laser-based detection and tracking moving objects using data-driven Markov chain Monte Carlo. In: ICRA, pp. 3800–3806 (2009)

    Google Scholar 

  28. Gate, G., Nashashibi, F.: Fast algorithm for pedestrian and group of pedestrians detection using a laser scanner. In: Intelligent Vehicles Symposium, pp. 1322–1327 (2009)

    Google Scholar 

  29. Gidel, S., Blanc, C., Chateau, T., Checchin, P., Trassoudaine, L.: A method based on multilayer laser scanner to detect and track pedestrians in urban environment. In: Intelligent Vehicles Symposium, pp. 157–162 (2009)

    Google Scholar 

  30. Mozos, O., Kurazume, R., Hasegawa, T.: Multi-part people detection using 2D range data. Int. J. Soc. Robot. 2(1), 31–40 (2010)

    Article  Google Scholar 

  31. Musleh, B., Garcia, F., Otamendi, J., Armingol, J.M., de la Escalera, A.: Identifying and tracking pedestrians based on sensor fusion and motion stability predictions. Sensors 10(9), 8028–8053 (2010)

    Article  Google Scholar 

  32. Gidel, S., Checchin, P., Blanc, C., Chateau, T., Trassoudaine, L.: Pedestrian detection and tracking in an urban environment using a multilayer laser scanner. Trans. Intell. Transp. 11(3), 579–588 (2010)

    Article  Google Scholar 

  33. Shao, X., Zhao, H., Shibasaki, R., Shi, Y., Sakamoto, K.: 3D crowd surveillance and analysis using laser range scanners. In: IEEE/RSJ IROS, pp. 2036–2043 (2011)

    Google Scholar 

  34. Fu, G., Corradi, P., Menciassi, A., Dario, P.: An integrated triangulation laser scanner for obstacle detection of miniature mobile robots in indoor environment. IEEE/ASME Trans. Mechatron. 16(4), 778–783 (2011)

    Article  Google Scholar 

  35. Song, X., Shao, X., Shibasaki, R., Zhao, H., Cui, J., Zha, H.: A novel laser-based system: fully online detection of abnormal activity via an unsupervised method. In: ICRA, pp. 1317–1322 (2011)

    Google Scholar 

  36. Zhao, H., Wang, C., Yao, W., Davoine, F., Cui, J., Zha, H.: Omni-directional detection and tracking of on-road vehicles using multiple horizontal laser scanners. In: Intelligent Vehicles Symposium, pp. 57–62 (2012)

    Google Scholar 

  37. Garcia, F., et al.: Environment perception based on LIDAR sensors for real road applications. Robotica 30(2), 185–193 (2012)

    Article  Google Scholar 

  38. Song, X., Shao, X., Zhang, Q., Shibasaki, R., Zhao, H., Zha, H.: Laser-based intelligent surveillance and abnormality detection in extremely crowded scenarios. In: ICRA, pp. 2170–2176 (2012)

    Google Scholar 

  39. Fotiadis, E.P., Garzon, M., Barrientos, A.: Human detection from a mobile robot using fusion of laser and vision information. Sensors 13(9), 11603–11635 (2013)

    Article  Google Scholar 

  40. Song, X., Shao, X., Zhang, Q., Shibasaki, R., Zhao, H., Zha, H.: A novel dynamic model for multiple pedestrians tracking in extremely crowded scenarios. Inf. Fus. 14, 301–310 (2013)

    Article  Google Scholar 

  41. Wada, Y., Higuchi, T., Yamaguchi, H., Higashino, T.: Accurate positioning of mobile phones in a crowd using laser range scanners. In: International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 430–435 (2013)

    Google Scholar 

  42. Akamatsu, S., Shimaji, N., Tomizawa, T.: Development of a person counting system using a 3D laser scanner. In: ROBIO, pp. 1983–1988 (2014)

    Google Scholar 

  43. Adiaviakoye, L., Patrick, P., Marc, B., Auberlet, J.M.: Tracking of multiple people in crowds using laser range scanners. In: International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 1–6 (2014)

    Google Scholar 

  44. Kim, B., Choi, B., Yoo, M., Kim, H., Kim, E.: Robust object segmentation using a multi-layer laser scanner. Sensors 14(11), 20400–20418 (2014)

    Article  Google Scholar 

  45. Kaneko, H., Osaragi, T.: Method for detecting sitting-and-moving behaviors and face-to-face communication using laser scanners. Procedia Environ. Sci. 22, 313–324 (2014)

    Article  Google Scholar 

  46. Leigh, A., Pineau, J., Olmedo, N., Zhang, H.: Person tracking and following with 2D laser scanners. In: ICRA, pp. 726–733 (2015)

    Google Scholar 

  47. Kim, S., Kim, H., Yoo, W., Huh, K.: Sensor fusion algorithm design in detecting vehicles using laser scanner and stereo vision. Trans. Intell. Transp. 17(14), 1072–1084 (2015)

    Google Scholar 

  48. Shalal, N., Low, T., McCarthy, C., Hancock, N.: Orchard mapping and mobile robot localisation using on-board camera and laser scanner data fusion-Part B: mapping and localisation. Comput. Electron. Agric. 119, 267–278 (2015)

    Article  Google Scholar 

  49. Hashimoto, M., Tsuji, A., Nishio, A., Takahashi, K.: Laser-based tracking of groups of people with sudden changes in motion. In: IEEE ICIT, pp. 315–320 (2015)

    Google Scholar 

  50. Galip, F., et al.: A novel approach to obtain trajectories of targets from laser scanned datasets. In: International Conference on Computer and Information Technology (ICCIT), pp. 231–236 (2015)

    Google Scholar 

  51. Weinrich, C., Wengefeld, T., Volkhardt, M., Scheidig, A., Gross, H.-M.: Generic distance-invariant features for detecting people with walking aid in 2D laser range data. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds.) Intelligent Autonomous Systems 13. AISC, vol. 302, pp. 735–747. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-08338-4_53

    Chapter  Google Scholar 

  52. Galip, F., Sharif, M.H., Caputcu, M., Uyaver, S.: Recognition of object from laser scanned data points using SVM. In: ICMIP, pp. 231–236 (2015)

    Google Scholar 

  53. Kim, S., Kim, H., Yoo, W., Huh, K.: Sensor fusion algorithm design in detecting vehicles using laser scanner and stereo vision. IEEE Trans. Intell. Transp. Syst. 17(4), 1072–1084 (2016)

    Article  Google Scholar 

  54. Tsugita, R., Nishino, N., Chugo, D., Muramatsu, S., Yokota, S., Hashimoto, H.: Pedestrian detection and tracking of a mobile robot with multiple 2D laser range scanners. In: International Conference on HSI, pp. 412–417 (2016)

    Google Scholar 

  55. Zou, C., He, B., Zhang, L., Zhang, J.: Dynamic objects detection and tracking for a laser scanner and camera system. In: ROBIO, pp. 350–354 (2017)

    Google Scholar 

  56. Liu, K., Wang, W.: Pedestrian detection on the slope using multi-layer laser scanner. In: International Conference on Information Fusion (FUSION), pp. 1–7 (2017)

    Google Scholar 

  57. Zhang, X., Xu, W., Dong, C., Dolan, J.M.: Efficient L-shape fitting for vehicle detection using laser scanners. In: Intelligent Vehicles Symposium, pp. 54–59 (2017)

    Google Scholar 

  58. Ishi, Y., Kawakami, T., Yoshihisa, T., Teranishi, Y., Shimojo, S.: A system design for detecting moving objects in capturing video images using laser range scanners. In: Barolli, L., Enokido, T., Takizawa, M. (eds.) NBiS 2017. LNDECT, vol. 7, pp. 1027–1036. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65521-5_94

    Chapter  Google Scholar 

  59. Zou, C., He, B., Zhang, L., Zhang, J.: Static map reconstruction and dynamic object tracking for a camera and laser scanner system. IET Comput. Vis. 12(4), 384–392 (2018)

    Article  Google Scholar 

  60. Kim, D., Jo, K., Lee, M., Sunwoo, M.: L-shape model switching-based precise motion tracking of moving vehicles using laser scanners. IEEE Trans. Intell. Transp. Syst. 19(2), 598–612 (2018)

    Article  Google Scholar 

  61. Gizlenmistir, Y.: Production of airborne laser scanner skilled advanced unmanned air vehicle and the potential of preliminary data. In: Signal Processing and Communications Applications Conference, Izmir, Turkey, pp. 1–4 (2018)

    Google Scholar 

  62. Zeng, J., Che, J., Xing, C., Zhang, L.-J.: A two-stage Bi-LSTM model for chinese company name recognition. In: Aiello, M., Yang, Y., Zou, Y., Zhang, L.-J. (eds.) AIMS 2018. LNCS, vol. 10970, pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94361-9_1

    Chapter  Google Scholar 

  63. Halmheu, R., Otto, B., Hegel, J.: Layout optimization of a system for successive laser scanner detection and control of mobile robots. Robot. Auton. Syst. 101, 103–113 (2018)

    Article  Google Scholar 

  64. Urano, K., Hiroi, K., Kato, S., Komagata, N., Kawaguchi, N.: Road surface condition inspection using a laser scanner mounted on an autonomous driving car. In: International Conference on Pervasive Computing and Communications Workshops, pp. 826–831 (2019)

    Google Scholar 

  65. Sharif, M.H., Shehu, H., Galip, F., Ince, I.F., Kusetogullari, H.: Object tracking from laser scanned dataset. Int. J. Comput. Sci. Eng. Tech. 3(6), 19–27 (2019)

    Google Scholar 

  66. Sick, A.G.: LMS5xx laser measurement sensors : Operating instructions (2015). https://www.sick.com/media/pdf/4/14/514/IM0037514.PDF

  67. Aizerman, M.A., Braverman, E.M., Rozoner, L.I.: Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control 25, 821–837 (1964)

    Google Scholar 

  68. Rahman, Q.I., Schmeisser, G.: Characterization of the speed of convergence of the trapezoidal rule. Numer. Math. 57(1), 123–138 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  69. Sharif, M.H.: An eigenvalue approach to detect flows and events in crowd videos. J. Circuits Syst. Comput. 26(07), 1750110 (2017)

    Article  Google Scholar 

  70. Sharif, M.H.: High-performance mathematical functions for single-core architectures. J. Circuits Syst. Comput. 23(04), 1450051 (2014)

    Article  Google Scholar 

  71. Sharif, M.: A numerical approach for tracking unknown number of individual targets in videos. Digit. Signal Proc. 57, 106–127 (2016)

    Article  MathSciNet  Google Scholar 

  72. Kuhn, H.: The Hungarian method for the assignment problem. Naval Res. Logist. 2, 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  73. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5, 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  74. Hammersley, J.M., Morton, K.W.: Poor man’s Monte Carlo. J. Roy. Stat. Soc. 16(1), 23–38 (1954)

    MathSciNet  MATH  Google Scholar 

  75. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3), 197–208 (2000)

    Article  Google Scholar 

  76. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman filter: Particle filters for tracking applications. Artech House, Norwood (2004)

    MATH  Google Scholar 

  77. Sharif, M.H., Galip, F., Guler, A., Uyaver, S.: A simple approach to count and track underwater fishes from videos. In: International Conference on Computer and Information Technology (ICCIT), pp. 347–352 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Haidar Sharif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharif, M.H. (2020). Particle Filter for Trajectories of Movers from Laser Scanned Dataset. In: Djeddi, C., Jamil, A., Siddiqi, I. (eds) Pattern Recognition and Artificial Intelligence. MedPRAI 2019. Communications in Computer and Information Science, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-030-37548-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37548-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37547-8

  • Online ISBN: 978-3-030-37548-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics