Skip to main content

On the Computational Biomechanics of the Intervertebral Disc

  • Chapter
  • First Online:
The Computational Mechanics of Bone Tissue

Abstract

The intervertebral disc (IVD) is a central piece for spine biomechanics. When the IVD fails, there is a high chance that one is suffering from degenerative disc disease (DDD), which is one of the largest health problems faced worldwide. However, DDD and back pain are also strictly related to the other structures in the spine, such as the vertebral bodies (VBs) or the connecting ligaments. An important amount of experimental and numerical works have studied the spine, focusing on the IVD, the VB or the whole spinal segment, but questions on how degeneration occurs and what causes it are still to be fully answered. This chapter deals with finite element (FE) simulations of the non-degenerated human IVD time-dependent behaviour, using a generic IVD + VB FE model. The outcomes are inside the scope of different sources of experimental and numerical literature data, proving that this model is useful to distinguish between healthy and unhealthy loading levels (shown here as above 600–800 N in activity periods for human spine). In other words, the numerical simulations with this FE model demonstrated potential to mimic the IVD. The biomechanical behaviour of the spine is still dependent on multiple factors, but this increased knowledge on overload levels definitely helps to reduce the risk of DDD and other spine-related diseases to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noailly J (2009) Model developments for in silico studies of the lumbar spine biomechanics. PhD thesis, Universitat Politècnica de Catalunya, Spain. http://hdl.handle.net/2117/93381

  2. Niosi CA, Oxland TR (2004) Degenerative mechanics of the lumbar spine. Spine J. 4:202–208. https://doi.org/10.1016/j.spinee.2004.07.013

    Article  Google Scholar 

  3. Ebraheim NA, Hassan A, Lee M, Xu R (2004) Functional anatomy of the lumbar spine. Semin Pain Med 2:131–137. https://doi.org/10.1016/j.spmd.2004.08.004

    Article  Google Scholar 

  4. Grumme T, Bittl M (1998) Imaging and therapy of degenerative spine diseases—a neurosurgeon’s view. Eur J Radiol 27:235–240

    Article  CAS  Google Scholar 

  5. Raj P (2008) Intervertebral disc: anatomy physiology pathophysiology treatment. Pain Pract 8:18–44. https://doi.org/10.1111/j.1533-2500.2007.00171.x

    Article  PubMed  Google Scholar 

  6. Shankar H, Scarlett JA, Abram SE (2009) Anatomy and pathophysiology of intervertebral disc disease. Tech Reg Anesth Pain Manag 13:67–75. https://doi.org/10.1053/j.trap.2009.05.001

    Article  Google Scholar 

  7. Whatley BR, Wen X (2012) Intervertebral disc (IVD): structure, degeneration, repair and regeneration. Mater Sci Eng C 32:61–77. https://doi.org/10.1016/j.msec.2011.10.011

    Article  CAS  Google Scholar 

  8. Fields AJ, Lee GL, Keaveny TM (2010) Mechanisms of initial endplate failure in the human vertebral body. J Biomech 43:3126–3131. https://doi.org/10.1016/j.jbiomech.2010.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  9. Swider P, Accadbled F, Laffosse JM, Sales de Gauzy J (2012) Influence of fluid-flow direction on effective permeability of the vertebral end plate: an analytical model. Comput Methods Biomech Biomed Eng 15:151–156. https://doi.org/10.1080/10255842.2010.518960

    Article  CAS  Google Scholar 

  10. Adams MA, Dolan P, McNally DS (2009) The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol 28:384–389. https://doi.org/10.1016/j.matbio.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  11. Hussain M, Natarajan RN, An HS, Andersson GBJ (2012) Progressive disc degeneration at C5–C6 segment affects the mechanics between disc heights and posterior facets above and below the degenerated segment: a flexion-extension investigation using a poroelastic C3-T1 finite element model. Med Eng Phys 34:552–558. https://doi.org/10.1016/j.medengphy.2011.08.014

    Article  PubMed  Google Scholar 

  12. Shirazi-Adl A, Schmidt H, Kingma I (2016) Spine loading and deformation—from loading to recovery. J Biomech 49:813–816. https://doi.org/10.1016/j.jbiomech.2016.02.024

    Article  PubMed  Google Scholar 

  13. Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila. Pa. 1976). 24:2468–2474

    Article  CAS  Google Scholar 

  14. Pollintine P, van Tunen MSLM, Luo J, Brown MD, Dolan P, Adams MA (2010) Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Spine (Phila. Pa. 1976). 35:386–394. https://doi.org/10.1097/BRS.0b013e3181b0ef26

    Article  Google Scholar 

  15. Guan Y, Yoganandan N, Moore J, Pintar FA, Zhang J, Maiman DJ, Laud P (2007) Moment-rotation responses of the human lumbosacral spinal column. J Biomech 40:1975–1980. https://doi.org/10.1016/j.jbiomech.2006.09.027

    Article  PubMed  Google Scholar 

  16. Rohlmann A, Petersen R, Schwachmeyer V, Graichen F, Bergmann G (2012) Spinal loads during position changes. Clin Biomech 27:754–758. https://doi.org/10.1016/j.clinbiomech.2012.04.006

    Article  CAS  Google Scholar 

  17. Stannard JT, Edamura K, Stoker AM, O’Connell GD, Kuroki K, Hung CT, Choma TJ, Cook JL (2016) Development of a whole organ culture model for intervertebral disc disease. J Orthop Transl 5:1–8. https://doi.org/10.1016/j.jot.2015.08.002

    Article  Google Scholar 

  18. Taher F, Essig D, Lebl DR, Hughes AP, Sama AA, Cammisa FP, Girardi FP (2012) Lumbar degenerative disc disease: current and future concepts of diagnosis and management. Adv Orthop 2012:970752. https://doi.org/10.1155/2012/970752

    Article  PubMed  PubMed Central  Google Scholar 

  19. Colombini A, Lombardi G, Corsi MM, Banfi G (2008) Pathophysiology of the human intervertebral disc. Int J Biochem Cell Biol 40:837–842. https://doi.org/10.1016/j.biocel.2007.12.011

    Article  CAS  PubMed  Google Scholar 

  20. Massey CJ, Van Donkelaar CC, Vresilovic E, Zavaliangos A, Marcolongo M (2012) Effects of aging and degeneration on the human intervertebral disc during the diurnal cycle: a finite element study. J Orthop Res 30:122–128. https://doi.org/10.1002/jor.21475

    Article  PubMed  Google Scholar 

  21. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila. Pa. 1976). 31:2151–2161. https://doi.org/10.1097/01.brs.0000231761.73859.2c

    Article  Google Scholar 

  22. Hadjipavlou AG, Tzermiadianos MN, Bogduk N, Zindrick MR (2008) The pathophysiology of disc degeneration: a critical review. J Bone Joint Surg Br 90:1261–1270. https://doi.org/10.1302/0301-620X.90B10.20910

    Article  Google Scholar 

  23. Vergroesen P-PA, Kingma I, Emanuel KS, Hoogendoorn RJW, Welting TJ, van Royen BJ, van Dieën JH, Smit TH (2015) Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthr Cartil 23:1057–1070. https://doi.org/10.1016/j.joca.2015.03.028

    Article  PubMed  Google Scholar 

  24. Martin MD, Boxell CM, Malone DG (2002) Pathophysiology of lumbar disc degeneration: a review of the literature. Neurosurg Focus 13:E1. https://doi.org/10.3171/foc.2002.13.2.2

    Article  PubMed  Google Scholar 

  25. Qasim M, Natarajan RN, An HS, Andersson GBJ (2012) Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: a finite element study. J Biomech 45:1934–1940. https://doi.org/10.1016/j.jbiomech.2012.05.022

    Article  PubMed  PubMed Central  Google Scholar 

  26. Castro APG, Laity P, Shariatzadeh M, Wittkowske C, Holland C, Lacroix D (2016) Combined numerical and experimental biomechanical characterization of soft collagen hydrogel substrate. J Mater Sci Mater Med 27:1–9. https://doi.org/10.1007/s10856-016-5688-3

    Article  CAS  Google Scholar 

  27. Castro APG, Wilson W, Huyghe JM, Ito K, Alves JL (2014) Intervertebral disc creep behavior assessment through an open source finite element solver. J Biomech 47:297–301. https://doi.org/10.1016/j.jbiomech.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  28. Cavalcanti C, Correia H, Castro APG, Alves JL (2013) Constitutive modelling of the annulus fibrosus: numerical implementation and numerical analysis. IEEE 3rd Port Meet Bioeng 7:3–6. https://doi.org/10.1109/ENBENG.2013.6518408

    Article  Google Scholar 

  29. Wilson W, van Donkelaar CC, Huyghe JM (2005) A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues. J Biomech Eng 127:158–165. https://doi.org/10.1115/1.1835361

    Article  CAS  PubMed  Google Scholar 

  30. Wilson W, Van Donkelaar CC, Van Rietbergen B, Huiskes R (2005) A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech 38:1195–1204. https://doi.org/10.1016/j.jbiomech.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  31. Heuer F, Schmitt H, Schmidt H, Claes L, Wilke HJ (2007) Creep associated changes in intervertebral disc bulging obtained with a laser scanning device. Clin Biomech 22:737–744. https://doi.org/10.1016/j.clinbiomech.2007.04.010

    Article  Google Scholar 

  32. O’Connell GD, Jacobs NT, Sen S, Vresilovic EJ, Elliott DM (2011) Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration. J Mech Behav Biomed Mater 4:933–942. https://doi.org/10.1016/j.jmbbm.2011.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wilke H-JJ, Neef P, Caimi M, Hoogland T, Claes LELE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila. Pa. 1976). 24:755–762

    Article  CAS  Google Scholar 

  34. Castro APG, Paul CPL, Detiger SEL, Smit TH, van Royen BJ, Pimenta Claro JC, Mullender MG, Alves JL (2014) Long-term creep behavior of the intervertebral disk: comparison between bioreactor data and numerical results. Front Bioeng Biotechnol 2:56. https://doi.org/10.3389/fbioe.2014.00056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huyghe JM, Houben GB, Drost MR, van Donkelaar CC (2002) An ionised/non-ionised dual porosity model of intervertebral disc tissue. Biomech Model Mechanobiol 2:3–19. https://doi.org/10.1007/s10237-002-0023-y

    Article  Google Scholar 

  36. Riches PE, Dhillon N, Lotz J, Woods AW, McNally DS (2002) The internal mechanics of the intervertebral disc under cyclic loading. J Biomech 35:1263–1271

    Article  CAS  Google Scholar 

  37. Schroeder Y, Huyghe JM, Van Donkelaar CC, Ito K (2010) A biochemical/biophysical 3D FE intervertebral disc model. Biomech Model Mechanobiol 9:641–650. https://doi.org/10.1007/s10237-010-0203-0

    Article  CAS  PubMed  Google Scholar 

  38. Eberlein R, Holzapfel GA, Schulze-Bauer CAJ (2001) An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Comput Methods Biomech Biomed Eng 4:209–229. https://doi.org/10.1080/10255840108908005

    Article  Google Scholar 

  39. Holzapfel GA, Schulze-Bauer CAJ, Feigl G, Regitnig P (2005) Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol 3:125–140. https://doi.org/10.1007/s10237-004-0053-8

    Article  CAS  PubMed  Google Scholar 

  40. Paul CPL, Schoorl T, Zuiderbaan HA, Zandieh Doulabi B, van der Veen AJ, van de Ven PM, Smit TH, van Royen BJ, Helder MN, Mullender MG (2013) Dynamic and static overloading induce early degenerative processes in caprine lumbar intervertebral discs. PLoS One 8. https://doi.org/10.1371/journal.pone.0062411

    Article  CAS  Google Scholar 

  41. Paul CPL, Zuiderbaan HA, Zandieh Doulabi B, van der Veen AJ, van de Ven PM, Smit TH, Helder MN, van Royen BJ, Mullender MG (2012) Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in EX vivo culture. PLoS ONE 7:29–34. https://doi.org/10.1371/journal.pone.0033147

    Article  CAS  Google Scholar 

  42. Detiger S, de Bakker J, Emanuel K, Schmitz M, Vergroesen P, van der Veen A, Mazel C, Smit T (2015). Translational challenges for the development of a novel nucleus pulposus substitute: experimental results from biomechanical and in vivo studies. J Biomater Appl 0:1–12. https://doi.org/10.1177/0885328215611946

    Article  Google Scholar 

  43. Vergroesen PPA, Van Der Veen AJ, Van Royen BJ, Kingma I, Smit TH (2014) Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. Eur Spine J 23:2359–2368. https://doi.org/10.1007/s00586-014-3450-4

    Article  PubMed  Google Scholar 

  44. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17:2–19. https://doi.org/10.1007/s00586-007-0414-y

    Article  PubMed  Google Scholar 

  45. Ayotte DC, Ito K, Tepic S (2001) Direction-dependent resistance to flow in the endplate of the intervertebral disc: an ex vivo study. J Orthop Res 19:1073–1077. https://doi.org/10.1016/S0736-0266(01)00038-9

    Article  CAS  PubMed  Google Scholar 

  46. Hoogendoorn RJW, Helder MN, Kroeze RJ, Bank RA, Smit TH, Wuisman PIJM (2008) Reproducible long-term disc degeneration in a large animal model. Spine (Phila. Pa. 1976). 33:949–954. https://doi.org/10.1097/BRS.0b013e31816c90f0

    Article  Google Scholar 

  47. Schmidt H, Reitmaier S (2012) Is the ovine intervertebral disc a small human one? A finite element model study. J Mech Behav Biomed Mater 17:229–241. https://doi.org/10.1016/j.jmbbm.2012.09.010

    Article  PubMed  Google Scholar 

  48. Johannessen W, Elliott DM (2005) Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine (Phila. Pa. 1976). 30:E724–E729. https://doi.org/10.1097/01.brs.0000192236.92867.15

    Article  Google Scholar 

  49. Périé D, Korda D, Iatridis JC (2005) Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J Biomech 38:2164–2171. https://doi.org/10.1016/j.jbiomech.2004.10.002

    Article  PubMed  Google Scholar 

  50. Araujo ARG, Peixinho N, Pinho A, Claro JCP (2015) The intradiscal failure pressure on porcine lumbar intervertebral discs: an experimental approach. Mech Sci 6:255–263. https://doi.org/10.5194/ms-6-255-2015

    Article  Google Scholar 

  51. Bashkuev M, Vergroesen PPA, Dreischarf M, Schilling C, van der Veen AJ, Schmidt H, Kingma I (2016) Intradiscal pressure measurements: a challenge or a routine? J Biomech 49:864–868. https://doi.org/10.1016/j.jbiomech.2015.11.011

    Article  PubMed  Google Scholar 

  52. Araujo ARG, Peixinho N, Pinho ACM, Claro JCP (2014) A novel methodology to assess the relaxation rate of the intervertebral disc by increments on intradiscal pressure. Appl Mech Mater 664:379–383. https://doi.org/10.4028/www.scientific.net/AMM.664.379

    Article  Google Scholar 

  53. Ferguson SJ, Ito K, Nolte LP (2004) Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 37:213–221. https://doi.org/10.1016/S0021-9290(03)00250-1

    Article  PubMed  Google Scholar 

  54. Schmidt H, Schilling C, Reyna ALP, Shirazi-Adl A, Dreischarf M (2016) Fluid-flow dependent response of intervertebral discs under cyclic loading: on the role of specimen preparation and preconditioning. J Biomech 49:846–856. https://doi.org/10.1016/j.jbiomech.2015.10.029

    Article  PubMed  Google Scholar 

  55. Lai A, Moon A, Purmessur D, Skovrlj B, Winkelstein BA, Cho SK, Hecht AC, Iatridis JC (2015) Assessment of functional and behavioral changes sensitive to painful disc degeneration. J Orthop Res 33:755–764. https://doi.org/10.1002/jor.22833

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. G. Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro, A.P.G., Flores, P., Claro, J.C.P., Completo, A.M.G., Alves, J.L. (2020). On the Computational Biomechanics of the Intervertebral Disc. In: Belinha, J., Manzanares-Céspedes, MC., Completo, A. (eds) The Computational Mechanics of Bone Tissue. Lecture Notes in Computational Vision and Biomechanics, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-37541-6_9

Download citation

Publish with us

Policies and ethics