Skip to main content

Random Telegraph Noise Under Switching Operation

  • Chapter
  • First Online:

Abstract

This chapter deals with random telegraph noise (RTN) under switching operation. We measured and modeled RTN by using ring oscillator-based (RO-based) test chips. They were fabricated in three different processes of 65 nm bulk, 65 nm FDSOI, and 40 nm bulk. Measurements are performed for ROs of different topology, gate width, and stage number under different supply voltage, substrate bias, and temperature. Measurement results reveal valuable insights into the impact of RTN on the reliability of logic circuits. We have also shown the variability change according to gate width, stage number, and supply voltage. We presented design methodology of a test structure so as to extract RTN parameters, which is used to develop a Verilog-AMS model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Summers, Apple’s A12 Bionic is the first 7-nanometer smartphone chip (2018). https://www.engadget.com/2018/09/12/apple-a12-bionic-7-nanometer-chip/. Accessed 10 Dec 2018

  2. S. Borkar, Designing reliable systems from unreliable components: the challenges of transistor variability and degradation. IEEE Micro 25, 10 (2005)

    Article  Google Scholar 

  3. M. Alam, Reliability- and process-variation aware design of integrated circuits. Microelectron. Reliab. 48, 1114 (2008)

    Article  Google Scholar 

  4. H. Onodera, Variability modeling and impact on design, in IEEE International Electron Devices Meeting (IEDM) (2008), p. 701

    Google Scholar 

  5. G.F. Taylor, Where are we going? Product scaling in the system on chip era, in IEEE International Electron Devices Meeting (IEDM) (2013), pp. 441–443

    Google Scholar 

  6. D. Boning, S. Nassif, Models of process variations in device and interconnect, in Chapter 6 of Design of High-Performance Microprocessor Circuits, ed. by A. Chandrakasan, W. Bowhill, F. Fox (IEEE, Piscataway, 2001), pp. 98–115

    Google Scholar 

  7. M.J. Kirton, M.J. Uren, Noise in solid-state microstructures: a new perspective on individual defects, interface states and low-frequency (1∕f) noise. Adv. Phys. 38(4), 367–468 (1989)

    Article  Google Scholar 

  8. K. Ito, T. Matsumoto, S. Nishizawa, H. Sunagawa, K. Kobayashi, H. Onodera, The impact of RTN on performance fluctuation in CMOS logic circuits, in IEEE International Reliability Physics Symposium (IRPS) (2011), pp. 710–713

    Google Scholar 

  9. T. Matsumoto, K. Kobayashi, H. Onodera, Impact of random telegraph noise on CMOS logic delay uncertainty under low voltage operation, in IEEE International Electron Devices Meeting (IEDM) (2012), p. 581

    Google Scholar 

  10. A. Asenov, R. Balasubramaniam, A.R. Brown, J.H. Davies, RTS amplitudes in decananometer MOSFETs: 3-D simulation study. IEEE Trans. Electron Devices 50(3), 839–845 (2003)

    Article  Google Scholar 

  11. N. Tega, H. Miki, Z. Ren, C.P. D’Emic, Y. Zhu, D.J. Frank, M.A. Guillorn, D.-G. Park, W. Haensch, K. Torii, Impact of HK/MG stacks and future device scaling on RTN, in IEEE International Reliability Physics Symposium (IRPS) (2011), pp. 630–635

    Google Scholar 

  12. H. Miki, M. Yamaoka, D.J. Frank, K. Cheng, D.G. Park, E. Leobandung, K. Torii, Voltage and temperature dependence of random telegraph noise in highly scaled HKMG ETSOI nFETs and its impact on logic delay uncertainty, in Symposium on VLSI Technology, vol. 12 (2012), pp. 137–138

    Google Scholar 

  13. S. Dongaonkar, M.D. Giles, A. Kornfeld, B. Grossnickle, J. Yoon, Random telegraph noise (RTN) in 14 nm logic technology : high volume data extraction and analysis, in Symposium on VLSI Technology (2016), pp. 176–177

    Google Scholar 

  14. K. Sonoda, K. Ishikawa, T. Eimori, O. Tsuchiya, Discrete dopant effects on statistical variation of random telegraph signal magnitude. IEEE Trans. Electron Devices 54(8), 1918–1925 (2007)

    Article  Google Scholar 

  15. K. Takeuchi, T. Nagumo, S. Yokogawa, K. Imai, Y. Hayashi, Single-charge-based modeling of transistor characteristics fluctuations based on statistical measurement of RTN amplitude, in Symposium on VLSI Technology (2009), pp. 54–55

    Google Scholar 

  16. S. Kiamehr, M.B. Tahoori, L. Anghel, Manufacuturing threats, in Part I of Dependable Multicore Architectures at Nanoscale ed. by M. Ottavi, D. Gizopoulos, S. Pontarelli (Springer, Berlin, 2018), pp. 3–36

    Google Scholar 

  17. T. Matsumoto, K. Kobayashi, H. Onodera, Impact of random telegraph noise on CMOS logic circuit reliability, in IEEE Custom Integrated Circuits Conference (CICC) (2014), pp. 14.4.1–14.4.8

    Google Scholar 

  18. T. Matsumoto, K. Kobayashi, H. Onodera, Impact of RTN-induced temporal performance fluctuation against static performance variation, in IEEE Electron Devices Technology and Manufacturing Conference (EDTM) (2017), pp. 31–32

    Google Scholar 

  19. P. Dutta, P.M. Horn, Low-frequency fluctuations in solids: 1∕f noise. Rev. Mod. Phys. 53(3), pp. 497–516 (1981)

    Article  Google Scholar 

  20. K.S. Ralls, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Epworth, D.M. Tennant, Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low-frequency (1∕f?) noise. Phys. Rev. Lett. 52(3), pp. 228–231 (1984)

    Article  Google Scholar 

  21. A. Teramoto, T. Fujisawa, K. Abe, S. Sugawa, T. Ohmi, Statistical evaluation for trap energy level of RTS characteristics, in Symposium on VLSI Technology (2010), pp. 99–100

    Google Scholar 

  22. H. Miki, N. Tega, M. Yamaoka, D.J. Frank, A. Bansal, M. Kobayashi, K. Cheng, C.P. D’Emic, Z. Ren, S. Wu, J. Yau, Y. Zhu, M.A. Guillorn, D. Park, W. Haensch, E. Leobandung, K. Torii, Statistical measurement of random telegraph noise and its impact in scaled-down high-κ/metal-gate MOSFETs, in IEEE International Electron Devices Meeting (IEDM) (2012), p. 19

    Google Scholar 

  23. D. Veksler, G. Bersuker, H. Park, C. Young, K.Y. Lim, S. Lee, H. Shin, The critical role of defect structural relaxation in interpreting noise measurements in MOSFETs introduction and motivation, in IEEE International Integral Reliability Working Final Report (2009), pp. 102–105

    Google Scholar 

  24. T. Nagumo, K. Takeuchi, T. Hase, Y. Hayashi, Statistical characterization of trap position, energy, amplitude and time constants by RTN measurement of multiple individual traps, in IEEE International Electron Devices Meeting (IEDM) (2010), pp. 28.3.1–28.3.4

    Google Scholar 

  25. T. Grasser, H. Reisinger, P. Wagner, F. Schanovsky, W. Goes, B. Kaczer, The time dependent defect spectroscopy (TDDS) for the characterization of the bias temperature instability, in IEEE International Reliability Physics Symposium (IRPS) (2010), pp. 16–25

    Google Scholar 

  26. Y. Son, T. Kang, S. Park, H. Shin, A simple model for capture and emission time constants of random telegraph signal noise. IEEE Trans. Nanotechnol. 10(6), 1352–1356 (2011)

    Article  Google Scholar 

  27. G. Slavcheva, J.H. Davies, A.R. Brown, A. Asenov, Potential fluctuations in metal-oxide-semiconductor field-effect transistors generated by random impurities in the depletion layer. J. Appl. Phys. 91(7), 4326–4334 (2002)

    Article  Google Scholar 

  28. X. Wang, P. Rao, A. Mierop, A. Theuwissen, Random telegraph signal in CMOS image sensor pixels, in IEEE International Electron Devices Meeting (IEDM) (2006), pp. 115–118

    Google Scholar 

  29. H. Kurata, K. Otsuga, A. Kotabe, S. Kajiyama, T. Osabe, Y. Sasago, S. Narumi, K. Tokami, S. Kamohara, O. Tsuchiya, Random telegraph signal in flash memory: its impact on scaling of multilevel flash memory beyond the 90-nm node. IEEE J. Solid-State Circ. 42(6), 1362–1369 (2007)

    Article  Google Scholar 

  30. M. Yamaoka, H. Miki, A. Bansal, S. Wu, D. Frank, E. Leobandung, K. Torii, Evaluation methodology for random telegraph noise effects in SRAM arrays, in IEEE International Electron Devices Meeting (IEDM) (2011), pp. 745–748

    Google Scholar 

  31. K. Takeuchi, T. Nagumo, K. Takeda, A. Asayama, S. Yokogawa, K. Imai, Y. Hayashi, Direct observation of RTN-induced SRAM failure by accelerated testing and its application to product reliability assessment, in Symposium on VLSI Technology (2010), pp. 189–190

    Google Scholar 

  32. K. Takeuchi, T. Nagumo, T. Hase, Comprehensive SRAM design methodology for RTN reliability, in Symposium on VLSI Technology (2011), pp. 130–131

    Google Scholar 

  33. F. Arnaud, N. Planes, O.Weber, V. Barral, S. Haendler, P. Flatresse, F. Nyer, Switching energy efficiency optimization for advanced CPU thanks to UTBB technology, in IEEE International Electron Devices Meeting (IEDM) (2012), pp. 48–51

    Google Scholar 

  34. H. Makiyama, Y. Yamamoto, H. Shinohara, T. Iwamatsu, H. Oda, N. Sugii, K. Ishibashi, T. Mizutani, T. Hiramoto, Y. Yamaguchi, Suppression of die-to-die delay variability of silicon on thin buried oxide (SOTB) CMOS circuits by balanced P/N drivability control with back-bias for ultralow-voltage (0.4 V) operation, in IEEE International Electron Devices Meeting (IEDM) (2013), pp. 822–825

    Google Scholar 

  35. T. Hiramoto, A. Kumar, T. Mizutani, J. Nishimura, T. Saraya, Statistical advantages of intrinsic channel fully depleted SOI MOSFETs over bulk MOSFETs, in IEEE Custom Integrated Circuit Conference (CICC) (2011), p. 5.2

    Google Scholar 

  36. C.-H. Jan, U. Bhattacharya, R. Brain, S.-J. Choi, G. Curello, G. Gupta, W. Hafez, M. Jang, M. Kang, K. Komeyli, T. Leo, N. Nidhi, L. Pan, J. Park, K. Phoa, A. Rahman, C. Staus, H. Hashiro, C. Tsai, P. Vandervoorn, L. Yang, J.-Y. Yeh, P. Bai, A 22 nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications, in IEEE International Electron Devices Meeting (IEDM) (2012), pp. 44–47

    Google Scholar 

  37. Y.F. Lim, Y.Z. Xiong, N. Singh, R. Yang, Y. Jiang, D.S.H. Chan, W.Y. Loh, L.K. Bera, G.Q. Lo, N. Balasubramanian, D.-L. Kwong, Random telegraph signal noise in Gate-all-around Si-FinFET with ultranarrow body. IEEE Electron Device Lett. 27(9), 765–768 (2006)

    Article  Google Scholar 

  38. M.-L. Fan, V.P.-H. Hu, Y.-N. Chen, P. Su, C.-T. Chuang, Analysis of single-trap-induced random telegraph noise on FinFET devices, 6T SRAM cell, and logic circuits. IEEE Trans. Electron Devices 59(8), 2227–2234 (2012)

    Article  Google Scholar 

  39. K. Ito, T. Matsumoto, S. Nishizawa, H. Sunagawa, K. Kobayashi, H. Onodera, Modeling of random telegraph noise under circuit operation -simulation and measurement of RTN-induced delay fluctuation, in IEEE International Symposium on Quality Electronic Design (ISQED) (2011), pp. 22–27

    Google Scholar 

  40. T. Matsumoto, K. Kobayashi, H. Onodera, Impact of body-biasing technique on random telegraph noise induced delay fluctuation. Jpn. J. App. Phys. 52, 04CE05 (2013)

    Google Scholar 

  41. T. Tsunomura, A. Nishida, F. Yano, A.T. Putra, K. Takeuchi, S. Inaba, S. Kamohara, K. Terada, T. Hiramoto, T. Mogami, Analyses of 5σ 5th fluctuation in 65 nm-MOSFETs using Takeuchi plot, in Symposium on VLSI Technology (2008), pp. 156–157

    Google Scholar 

  42. J.W. Tschanz, J.T. Kao, S.G. Narendra, R. Nair, D.A. Antoniadis, A.P. Chandrakasan, V. De, Adaptive body bias for reducing impacts of Die-to-die and within-die parameter variations on microprocessor frequency and leakage. IEEE J. Solid-State Circ. 37(11), 1396–1402 (2002)

    Article  Google Scholar 

  43. R. Kishida, K. Kobayashi, Degradation caused by negative bias temperature instability depending on Body Bias on NMOS or PMOS in 65 nm bulk and thin-BOX FDSOI processes, in IEEE Electron Devices Technology and Manufacturing Conference (EDTM) (2017), pp. 122–123

    Google Scholar 

  44. J. Franco, B. Kaczer, G. Eneman, P.J. Roussel, T. Grasser, J. Mitard, L.-A. Ragnarsson, M. Cho, L. Witters, T. Chiarella, M. Togo, W.-E. Wang, A. Hikavyy, R. Loo, N. Horiguchi, G. Groeseneken, Superior NBTI reliability of SiGe channel pMOSFETs: replacement gate, FinFETs, and impact of Body Bias, in International Electron Devices Meeting (2011), pp. 18.5.1–18.5.4

    Google Scholar 

  45. T. Tsunomura, A. Nishida, T. Hiramoto, Investigation of threshold voltage variability at high temperature using takeuchi plot. Jpn. J. Appl. Phys. 49(5), 054101 (2010)

    Google Scholar 

  46. M. Toledano-Luque, B. Kaczer, P. Roussel, M. Cho, T. Grasser, G. Groeseneken, Temperature dependence of the emission and capture times of SiON individual traps after positive bias temperature stress. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 29, 01 (2011)

    Google Scholar 

  47. C.G. Theodorou, E.G. Ioannidis, S. Haendler, E. Josse, C.A. Dimitriadis, G. Ghibaudo, Low frequency noise variability in ultra scaled FD-SOI n-MOSFETs: dependence on gate bias, frequency and temperature. Solid. State. Electron. 117, 88–93 (2016)

    Article  Google Scholar 

  48. Y. Morita, R. Tsuchiya, T. Ishigaki, N. Sugii, T. Iwamatsu, T. Ipposhi, H. Oda, Y. Inoue, K. Torii, S. Kimura, Smallest Vth variability achieved by intrinsic silicon on thin BOX (SOTB) CMOS with single metal gate, in Symposium on VLSI Technology (2008), pp. 166–167

    Google Scholar 

  49. B. Silverman, Using kernel density estimates to investigate multimodality. J. R. Stat. Soc. Ser. B Methodol. 43(1), 97–99 (2018)

    MathSciNet  Google Scholar 

  50. Z. Zhang, S. Guo, X. Jiang, R. Wang, R. Huang, Investigation on the amplitude distribution of random telegraph noise (RTN) in nanoscale MOS devices, in IEEE International Nanoelectronics Conference (INEC) (2016), pp. 5–6

    Google Scholar 

  51. H. Awano, H. Tsutsui, H. Ochi, T. Sato, Bayesian estimation of multi-trap RTN parameters using markov chain Monte Carlo method, in IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences, vol. E95.A(12) (2012), pp. 2272–2283

    Google Scholar 

  52. J. Martin-Martinez, J. Diaz, R. Rodriguez, M. Nafria, X. Aymerich, New weighted time lag method for the analysis of random telegraph signals. IEEE Electron Device Lett. 35(4), 479–481 (2014)

    Article  Google Scholar 

  53. T. Komawaki, M. Yabuuchi, R. Kishida, J. Furuta, T. Matsumoto, K. Kobayashi, Replication of random telegraph noise by using a physical-based Verilog-AMS model. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E100.A(12), 2758–2763 (2017)

    Google Scholar 

  54. T. Komawaki, M. Yabuuchi, R. Kishida, J. Furuta, T. Matsumoto, K. Kobayashi, Circuit-level simulation methodology for random telegraph noise by using Verilog-AMS, in IEEE International Conference on IC Design and Technology (ICICDT) (2017), pp. 1–4

    Google Scholar 

  55. M. Tanizawa, S. Ohbayashi, T. Okagaki, K. Sonoda, K. Eikyu, Y. Hirano, K. Ishikawa, O. Tsuchiya, Y. Inoue, Application of a statistical compact model for Random Telegraph Noise to scaled-SRAM Vmin analysis, in Symposium on VLSI Technology (2010), pp. 95–96

    Google Scholar 

  56. T. Matsumoto, K. Kobayashi, H. Onodera, Impact of random telegraph noise on CMOS logic circuit reliability, in IEEE Custom Integrated Circuits Conference (CICC) (2014), pp. 1–8

    Google Scholar 

  57. B. Kaczer, T. Grasser, P. Roussel, J. Franco, R. Degraeve, L.-A. Ragnarsson, E. Simoen, G. Groeseneken, H. Reisinger, Origin of NBTI variability in deeply scaled pFETs, in IEEE International Reliability Physics Symposium (IRPS) (2010), pp. 26–32

    Google Scholar 

  58. A. Oshima, P. Weckx, B. Kaczer, K. Kobayashi, T. Matsumoto, Impact of random telegraph noise on ring oscillators evaluated by circuit-level simulations, in IEEE International Conference on IC Design and Technology (ICICDT) (2015), pp. 1–4

    Google Scholar 

  59. M. Toledano-Luque, B. Kaczer, J. Franco, P. Roussel, T. Grasser, T. Hoffmann, G. Groeseneken, From mean values to distributions of BTI lifetime of deeply scaled FETs through atomistic understanding of the degradation, in Symposium on VLSI Technology (2011), pp. 152–153

    Google Scholar 

  60. T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, F. Schanovsky, J. Franco, P. Roussel, M. Nelhiebel, Recent advances in understanding the bias temperature instability, in IEEE International Electron Devices Meeting (IEDM) (2010), pp. 4.4.1–4.4.4

    Google Scholar 

  61. H. Reisinger, T. Grasser, W. Gustin, C. Schlunder, The statistical analysis of individual defects constituting NBTI and its implications for modeling DC- and AC-stress, in IEEE International Reliability Physics Symposium (IRPS) (2010), pp. 7–15

    Google Scholar 

  62. M. Nour, M. Mahmud, Z. Celik-Butler, D. Basu, S. Tang, F.-C. Hou, R. Wise, Variability of random telegraph noise in analog MOS transistors, in IEEE International Conference on Noise and Fluctuations (ICNF) (2013), pp. 1–4

    Google Scholar 

  63. K. Ito, T. Matsumoto, S. Nishizawa, H. Sunagawa, K. Kobayashi, H. Onodera, Modeling of Random Telegraph Noise under circuit operation—Simulation and measurement of RTN-induced delay fluctuation, in IEEE International Symposium on Quality Electronic Design (ISQED) (2011), pp. 1–6

    Google Scholar 

  64. M. Miura-Mattausch, H. Ueno, M. Tanaka, H. Mattausch, S. Kumashiro, T. Yamaguchi, K. Yamashita, N. Nakayama, HiSIM: a MOSFET model for circuit simulation connecting circuit performance with technology, in IEEE International Electron Devices Meeting (IEDM) (2002), pp. 109–112

    Google Scholar 

  65. A. Oshima, T. Komawaki, K. Kobayashi, R. Kishida, P. Weckx, B. Kaczer, T. Matsumoto, H. Onodera, Physical-based RTN modeling of ring oscillators in 40-nm SiON and 28-nm HKMG by bimodal defect-centric behaviors, in IEEE International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2016), pp. 327–330

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutoshi Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kobayashi, K., Islam, M., Matsumoto, T., Kishida, R. (2020). Random Telegraph Noise Under Switching Operation. In: Grasser, T. (eds) Noise in Nanoscale Semiconductor Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-37500-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37500-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37499-0

  • Online ISBN: 978-3-030-37500-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics