Skip to main content

Advanced Electrical Characterization of Single Oxide Defects Utilizing Noise Signals

  • Chapter
  • First Online:
Noise in Nanoscale Semiconductor Devices

Abstract

In this chapter, we will discuss the characterization of oxide defects utilizing their effect on noise signals recorded on scaled MOS transistors. The main focus is put on the analysis of noise signals, especially on the analysis of the so-called random telegraph noise (RTN), which is caused by single microscopic defects in the MOS transistor. In detail, RTN signals evolve as discrete changes of the current between two distinct levels when static bias conditions are applied to the transistor. From these signals, characteristic charge transition times of single defects can be extracted. To extend the measurement window, the related time domain defect spectroscopy (TDDS) can be used. The idea behind TDDS is similar to RTN, with the difference that the biases are switched during the characterization to cover the entire operating regime of the transistor. Afterwards the evaluation of the measurement data not only using histograms and time lag plots but also using more advanced methods based on Markov chains and the Canny edge detection algorithm is discussed. Finally, the physics-based four-state defect model is briefly introduced. In combination with density function theory simulations, the four-state defect model provides the link between experimental data and possible atomistic defect structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Terman, An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron. 5(5), 285–299 (1962)

    Article  Google Scholar 

  2. J.S. Brugler, P.G.A. Jespers, Charge pumping in MOS devices. IEEE Trans. Electron Devices 16, 297–302 (1969)

    Article  Google Scholar 

  3. G. Groeseneken, H.E. Maes, N. Beltran, R.F. De Keersmaecker, A reliable approach to charge-pumping measurements in MOS transistors. IEEE Trans. Electron Devices 31, 42–53 (1984)

    Article  Google Scholar 

  4. D.V. Lang, Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45(7), 3023–3032 (1974)

    Article  Google Scholar 

  5. A. Neugroschel, C.-T. Sah, K.M. Han, M.S. Carroll, T. Nishida, J.T. Kavalieros, Y. Lu, Direct-current measurements of oxide and interface traps on oxidized silicon. IEEE Trans. Electron Devices 42(9), 1657–1662 (1995)

    Article  Google Scholar 

  6. C.-T. Sah, A. Neugroschel, K. M. Han, and J. T. Kavalieros, Profiling interface traps in MOS transistors by the DC current-voltage method. IEEE Electron Device Lett. 17(2), 72–74 (1996)

    Article  Google Scholar 

  7. B. Kaczer, T. Grasser, J. Roussel, J. Martin-Martinez, R. O’Connor, B. O’sullivan, G. Groeseneken, Ubiquitous relaxation in BTI stressing-new evaluation and insights, in 2008 IEEE International Reliability Physics Symposium, pp. 20–27 (IEEE, Piscataway, 2008)

    Google Scholar 

  8. A.L. McWhorter et al., 1/f Noise and Related Surface Effects in Germanium (MIT Lincoln Laboratory, Cambridge, 1955)

    Google Scholar 

  9. H. Mikoshiba, 1/f noise in n-channel silicon-gate MOS transistors. IEEE Trans. Electron Devices 29, 965–970 (1982)

    Article  Google Scholar 

  10. K.S. Ralls, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Epworth, D.M. Tennant, Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low-frequency (\(\frac {1}{f}\)) noise. Phys. Rev. Lett. 52, 228–231 (1984)

    Google Scholar 

  11. B. Stampfer, F. Zhang, Y.Y. Illarionov, T. Knobloch, P. Wu, M. Waltl, A. Grill, J. Appenzeller, T. Grasser, Characterization of single defects in ultrascaled MoS2 field-effect transistors. ACS Nano 12(6), 5368–5375 (2018). PMID: 29878746

    Article  Google Scholar 

  12. M. Bina, O. Triebl, B. Schwarz, M. Karner, B. Kaczer, T. Grasser, Simulation of reliability on nanoscale devices, in Proceedings of the 16th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 109–112 (2012)

    Google Scholar 

  13. A. Ghetti, C. Compagnoni, A. Spinelli, A. Visconti, Comprehensive analysis of random telegraph noise instability and its scaling in deca–nanometer flash memories. IEEE Trans. Electron Devices 56(8), 1746–1752 (2009)

    Article  Google Scholar 

  14. T. Grasser, H. Reisinger, P.-J. Wagner, W. Goes, F. Schanovsky, B. Kaczer, The time dependent defect spectroscopy (TDDS) for the characterization of the bias temperature instability, in IEEE International Reliability Physics Symposium, pp. 16–25 (2010)

    Google Scholar 

  15. S. Machlup, Noise in semiconductors: spectrum of a two-parameter random signal. J. Appl. Phys. 25(3), 341–343 (1954)

    Article  MATH  Google Scholar 

  16. T. Grasser, K. Rott, H. Reisinger, M. Waltl, J. Franco, B. Kaczer, A unified perspective of RTN and BTI, in 2014 IEEE International Reliability Physics Symposium, pp. 4A.5.1–4A.5.7 (2014)

    Google Scholar 

  17. C. Marquez, O. Huerta, A.I. Tec-Chim, F. Guarin, E.A. Gutierrez-D, F. Gamiz, Systematic characterization of random telegraph noise and its dependence with magnetic fields in MOSFET devices, in Noise in Nanoscale Semiconductor Devices, ed. by T. Grasser (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-37500-3_4

    Google Scholar 

  18. B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, M. Goodwin, Disorder-controlled-kinetics model for negative bias temperature instability and its experimental verification, in IEEE International Reliability Physics Symposium, 2005. Proceedings., pp. 381–387 (2005)

    Google Scholar 

  19. A. Kerber, K. Maitra, A. Majumdar, M. Hargrove, R. J. Carter, E. A. Cartier, Characterization of fast relaxation during BTI stress in conventional and advanced CMOS devices with HfO2/TiN gate stacks, IEEE Trans. Electron Devices 55(11), 3175–3183 (2008)

    Article  Google Scholar 

  20. H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin, C. Schlünder, Analysis of NBTI degradation- and recovery-behavior based on ultra fast V th-measurements, in IEEE International Reliability Physics Symposium Proceedings, pp. 448–453 (2006)

    Google Scholar 

  21. B. Ullmann, K. Puschkarsky, M. Waltl, H. Reisinger, T. Grasser, Evaluation of advanced MOSFET threshold voltage drift measurement techniques. IEEE Trans. Device Mater. Reliab. 19(2), 358–362 (2019)

    Article  Google Scholar 

  22. G.A. Du, D.S. Ang, Z.Q. Teo, Y.Z. Hu, Ultrafast measurement on NBTI. IEEE Electron Device Lett. 30, 275–277 (2009)

    Article  Google Scholar 

  23. M. Maestro, J. Diaz, A. Crespo-Yepes, M. Gonzalez, J. Martin-Martinez, R. Rodriguez, M. Nafria, F. Campabadal, X. Aymerich, New high resolution random telegraph noise (RTN) characterization method for resistive RAM. Solid State Electron. 115, 140–145 (2016). Selected papers from the EUROSOI-ULIS conference

    Google Scholar 

  24. G. Kapila, V. Reddy, Impact of sampling rate on RTN time constant extraction and its implications on bias dependence and trap spectroscopy. IEEE Trans. Device Mater. Reliab. 14(2), 616–622 (2014)

    Article  Google Scholar 

  25. H. Reisinger, The time-dependent defect spectroscopy, in Bias Temperature Instability for Devices and Circuits (Springer, Berlin, 2014), pp. 75–109

    Book  Google Scholar 

  26. T. Nagumo, K. Takeuchi, S. Yokogawa, K. Imai, Y. Hayashi, New analysis methods for comprehensive understanding of random telegraph noise, in 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1–4 (2009)

    Google Scholar 

  27. T. Nagumo, K. Takeuchi, T. Hase, Y. Hayashi, Statistical characterization of trap position, energy, amplitude and time constants by RTN measurement of multiple individual traps, in 2010 IEEE International Electron Devices Meeting (IEDM), pp. 28–3 (IEEE, Piscataway, 2010)

    Google Scholar 

  28. Y. Yuzhelevski, M. Yuzhelevski, G. Jung, Random telegraph noise analysis in time domain. Rev. Sci. Instrum. 71(4), 1681–1688 (2000)

    Article  Google Scholar 

  29. J. Martin-Martinez, J. Diaz, R. Rodriguez, M. Nafria, X. Aymerich, New weighted time lag method for the analysis of random telegraph signals. IEEE Electron Device Lett. 35, 479–481 (2014)

    Article  Google Scholar 

  30. J. Martin-Martinez, R. Rodriguez, M. Nafria, Advanced characterization and analysis of random telegraph noise in CMOS devices, in Noise in Nanoscale Semiconductor Devices, ed. by T. Grasser (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-37500-3_14

    Google Scholar 

  31. J. Canny, A computational approach to edge detection, in Readings in Computer Vision (Elsevier, Amsterdam, 1987), pp. 184–203

    Google Scholar 

  32. P. Bao, L. Zhang, X. Wu, Canny edge detection enhancement by scale multiplication, IEEE Trans. Pattern Anal. Mach. Intell. 27, 1485–1490 (2005)

    Article  Google Scholar 

  33. N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  34. A. Grill, B. Stampfer, M. Waltl, K.-S. Im, J.-H. Lee, C. Ostermaier, H. Ceric, T. Grasser, Characterization and modeling of single defects in GaN/AlGaN fin-MIS-HEMTs, in IEEE International Reliability Physics Symposium Proceedings (2017), pp. 3B–5

    Google Scholar 

  35. L.E. Baum, T. Petrie, G. Soules, N. Weiss, A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41(1), 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Trans. Inf. Theory 13(2), 260–269 (1967)

    Article  MATH  Google Scholar 

  37. H. Miki, N. Tega, M. Yamaoka, D.J. Frank, A. Bansal, M. Kobayashi, K. Cheng, C.P. D’Emic, Z. Ren, S. Wu, J. Yau, Y. Zhu, M.A. Guillorn, D.-G. Park, W. Haensch, E. Leobandung, K. Torii, Statistical measurement of random telegraph noise and its impact in scaled-down high-k/metal-gate MOSFETs, in 2012 International Electron Devices Meeting, pp. 19.1.1–19.1.4 (2012)

    Google Scholar 

  38. W.S. Cleveland, Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. P.H. Eilers, A perfect smoother. Anal. Chem. 75(14), 3631–3636 (2003)

    Article  Google Scholar 

  40. L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  41. R. Weiss, S. Du, J. Grobler, S. Lebedev, and G. Varoquaux, hmmlearn 0.2.2 (2017)

    Google Scholar 

  42. J. Schreiber, Pomegranate: fast and flexible probabilistic modeling in python. J. Mach. Learn. Res. 18(1), 5992–5997 (2017)

    MathSciNet  Google Scholar 

  43. D.J. Frank, H. Miki, Analysis of oxide traps in nanoscale MOSFETs using random telegraph noise, in Bias Temperature Instability for Devices and Circuits (Springer, Berlin, 2014), pp. 111–134

    Book  Google Scholar 

  44. F.M. Puglisi, P. Pavan, Factorial hidden Markov model analysis of random telegraph noise in resistive random access memories. ECTI Trans. Electr. Eng. Electron. Commun. 12(1), 24–29 (2014)

    Google Scholar 

  45. Z. Ghahramani, M.I. Jordan, Factorial hidden Markov models, in Advances in Neural Information Processing Systems (1996), pp. 472–478

    Google Scholar 

  46. E. Simoen, B. Dierickx, C.L. Claeys, G.J. Declerck, Explaining the amplitude of RTS noise in submicrometer MOSFETs. IEEE Trans. Electron Devices 39, 422–429 (1992)

    Article  Google Scholar 

  47. A.-M. El-Sayed, Y. Wimmer, W. Goes, T. Grasser, V.V. Afanas’ ev, A.L. Shluger, Theoretical models of hydrogen-induced defects in amorphous silicon dioxide. Phys. Rev. B 92(1), 014107 (2015)

    Google Scholar 

  48. A.L. Shluger, K.P. McKenna, Models of oxygen vacancy defects involved in degradation of gate dielectrics, in 2013 IEEE International Reliability Physics Symposium (IRPS) (2013), pp. 5A.1.1–5A.1.9

    Google Scholar 

  49. S. Pantelides, Z.-Y. Lu, C. Nicklaw, T. Bakos, S. Rashkeev, D. Fleetwood, R. Schrimpf, The E center and oxygen vacancies in SiO2. J. Non-Cryst. Solids 354(2–9), 217–223 (2008)

    Article  Google Scholar 

  50. Y. Wimmer, A.-M. El-Sayed, W. Goes, T. Grasser, A.L. Shluger, Role of hydrogen in volatile behaviour of defects in SiO2-based electronic devices, in Proceedings of the Royal Society A, vol. 472 (The Royal Society, London, 2016), p. 20160009

    Google Scholar 

  51. T. Grasser, M. Waltl, Y. Wimmer, W. Goes, R. Kosik, G. Rzepa, H. Reisinger, G. Pobegen, A. El-Sayed, A. Shluger, et al., Gate-sided hydrogen release as the origin of “permanent” NBTI degradation: from single defects to lifetimes, in IEEE International Electron Devices Meeting (IEDM) (IEEE, Piscataway, 2015), pp. 20–21

    Google Scholar 

  52. T. Grasser, M. Waltl, W. Goes, Y. Wimmer, A.-M. El-Sayed, A. Shluger, B. Kaczer, On the volatility of oxide defects: activation, deactivation and transformation, in IEEE International Reliability Physics Symposium Proceedings (2015), pp. 5A.3.1–5A.3.8

    Google Scholar 

  53. M.J. Uren, M.J. Kirton, S. Collins, Anomalous telegraph noise in small-area silicon metal-oxide-semiconductor field-effect transistors. Phys. Rev. B 37, 8346–8350 (1988)

    Article  Google Scholar 

  54. K. Huang, A. Rhys, Theory of light absorption and non-radiative transitions in f-centres, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 204 (1950), pp. 406–423

    Google Scholar 

  55. D. Lang, C. Henry, Nonradiative recombination at deep levels in GaAs and GaP by lattice-relaxation multiphonon emission. Phys. Rev. Lett. 35(22), 1525 (1975)

    Google Scholar 

  56. M. Kirton, M. Uren, Noise in solid-state microstructures: a new perspective on individual defects, interface states and low-frequency (1/f) noise. Adv. Phys. 38(4), 367–468 (1989)

    Article  Google Scholar 

  57. T. Grasser, Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities. Microelectron. Reliab. 52(1), 39–70 (2012)

    Article  Google Scholar 

  58. W. Goes, F. Schanovsky, T. Grasser, Advanced modeling of oxide defects, in Bias Temperature Instability for Devices and Circuits (Springer, Berlin, 2014), pp. 409–446

    Book  Google Scholar 

  59. W. Goes, Y. Wimmer, A.-M. El-Sayed, G. Rzepa, M. Jech, A. Shluger, T. Grasser, Identification of oxide defects in semiconductor devices: a systematic approach linking DFT to rate equations and experimental evidence. Microelectron. Reliab. 87, 286–320 (2018)

    Article  Google Scholar 

  60. Y. Wimmer, Hydrogen Related Defects in Amorphous SiO2 and the Negative Bias Temperature Instability. Dissertation, Technische Universität Wien (2017)

    Google Scholar 

  61. D. Waldhoer, A.-M. El-Sayed, Y. Wimmer, M. Waltl, T. Grasser, Atomistic modeling of oxide defects, in Noise in Nanoscale Semiconductor Devices, ed. by T. Grasser (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-37500-3_18

    Google Scholar 

  62. G. Rzepa, J. Franco, B. O’Sullivan, A. Subirats, M. Simicic, G. Hellings, P. Weckx, M. Jech, T. Knobloch, M. Waltl, P. Roussel, D. Linten, B. Kaczer, T. Grasser, Comphy – a compact-physics framework for unified modeling of BTI. Microelectron. Reliab. 85, 49–65 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Austrian Science Fund (FWF) under Project P 26382-N30, Project P 23958-N24, and Project I2606-N30, in part by the European Union FP7 Project ATHENIS 3-D under Grant 619246, and in part by the Austrian Research Promotion Agency (FFG, Take-Off Program) under Project 861022 and Project 867414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Stampfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stampfer, B., Grill, A., Waltl, M. (2020). Advanced Electrical Characterization of Single Oxide Defects Utilizing Noise Signals. In: Grasser, T. (eds) Noise in Nanoscale Semiconductor Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-37500-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37500-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37499-0

  • Online ISBN: 978-3-030-37500-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics