Skip to main content

Multi-agent Path Finding with Generalized Conflicts: An Experimental Study

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11978))

Included in the following conference series:

  • 619 Accesses

Abstract

This paper gives an overview of conflict reasoning in generalizations of multi-agent path finding (MAPF). MAPF and derived variants assume items placed in vertices of an undirected graph with at most one item per vertex. Items can be relocated across edges while various constraints depending on the concrete type of relocation problem must be satisfied. We recall a general problem formulation that encompasses known types of item relocation problems such as multi-agent path finding (MAPF), token swapping (TSWAP), token rotation (TROT), and token permutation (TPERM). We then focused on three existing optimal algorithms for MAPF: search-based CBS, and propositional satisfiability (SAT) - based MDD-SAT and SMT-CBS. These algorithms were modified to tackle various types of conflicts. The major contribution of this paper is a thorough experimental evaluation of CBS, MDD-SAT, and SMT-CBS on various types of relocation problems.

This work has been supported by GAÄŒR - the Czech Science Foundation, grant registration number 19-17966S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The presented version of adjacency is sometimes called parallel while a term adjacency is reserved for the case with \(|F|=1\).

  2. 2.

    The notation \(path(a_i)\) refers to path in the form of a seqeunce of vertices and edges connecting \(\alpha _0(a_i)\) and \( \alpha _+(a_i)\) while \(\xi \) assigns the cost to a given path.

  3. 3.

    These problems have been considered in the literature in different contexts already (for example in [56]). But not from the practical solving perspective focused on finding optimal solutions.

  4. 4.

    Formally this is the same as in MAPF, but in addition to this MAPF checks vacancy of the target vertex which may cause more colliding situations.

  5. 5.

    To enable reproducibility of results presented in this paper we provide complete source codes and experimental data on author’s web page: http://users.fit.cvut.cz/surynpav/research/ icaart2019revised.

References

  1. Audemard, G., Lagniez, J., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: SAT, pp. 309–317 (2013)

    Chapter  Google Scholar 

  2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: IJCAI, pp. 399–404 (2009)

    Google Scholar 

  3. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT competition 2016: recent developments. In: AAAI, pp. 5061–5063 (2017)

    Google Scholar 

  4. Basile, F., Chiacchio, P., Coppola, J.: A hybrid model of complex automated warehouse systems - part I: modeling and simulation. IEEE Trans. Autom. Sci. Eng. 9(4), 640–653 (2012)

    Article  Google Scholar 

  5. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2009)

    Google Scholar 

  6. Bofill, M., Palahí, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems with SAT modulo theories. Constraints 17(3), 273–303 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bonnet, É., Miltzow, T., Rzazewski, P.: Complexity of token swapping and its variants. In: STACS 2017. LIPIcs, vol. 66, pp. 16:1–16:14. Schloss Dagstuhl (2017)

    Article  MathSciNet  Google Scholar 

  8. Botea, A., Kishimoto, A., Marinescu, R.: On the complexity of quantum circuit compilation. In: Bulitko, V., Storandt, S. (eds.) Proceedings of the Eleventh International Symposium on Combinatorial Search, SOCS 2018, Stockholm, Sweden - 14–15 July 2018, pp. 138–142. AAAI Press (2018)

    Google Scholar 

  9. Boyarski, E., et al.: ICBS: improved conflict-based search algorithm for multi-agent pathfinding. In: IJCAI, pp. 740–746 (2015)

    Google Scholar 

  10. Dresner, K., Stone, P.: A multiagent approach to autonomous intersection management. JAIR 31, 591–656 (2008)

    Article  Google Scholar 

  11. Felner, A., et al.: Search-based optimal solvers for the multi-agent pathfinding problem: Summary and challenges. In: Proceedings of the Tenth International Symposium on Combinatorial Search, SOCS 2017, pp. 29–37. AAAI Press (2017)

    Google Scholar 

  12. Kapadia, M., Ninomiya, K., Shoulson, A., Garcia, F.M., Badler, N.I.: Constraint-aware navigation in dynamic environments. In: Motion in Games, MIG 2013, Dublin, Ireland, 6–8 November 2013, pp. 111–120. ACM (2013)

    Google Scholar 

  13. Kawahara, J., Saitoh, T., Yoshinaka, R.: The time complexity of the token swapping problem and its parallel variants. In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 448–459. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53925-6_35

    Chapter  MATH  Google Scholar 

  14. Kim, D.G., Hirayama, K., Park, G.K.: Collision avoidance in multiple-ship situations by distributed local search. J. Adv. Comput. Intell. Intell. Inform. 18, 839–848 (2014)

    Article  Google Scholar 

  15. Kornhauser, D., Miller, G.L., Spirakis, P.G.: Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. FOCS 1984, 241–250 (1984)

    Google Scholar 

  16. Luna, R., Bekris, K.E.: Push and swap: fast cooperative path-finding with completeness guarantees. In: IJCAI, pp. 294–300 (2011)

    Google Scholar 

  17. Luna, R., Bekris, K.: Efficient and complete centralized multi-robot path planning. In: IROS, pp. 3268–3275 (2011)

    Google Scholar 

  18. Luna, R., Bekris, K.E.: Network-guided multi-robot path planning in discrete representations. In: IROS, pp. 4596–4602 (2010)

    Google Scholar 

  19. Miltzow, T., Narins, L., Okamoto, Y., Rote, G., Thomas, A., Uno, T.: Approximation and hardness of token swapping. In: ESA 2016. LIPIcs, vol. 57, pp. 66:1–66:15. Schloss Dagstuhl (2016)

    Google Scholar 

  20. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract davis-putnam-logemann-loveland procedure to dpll(T). J. ACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  21. Ratner, D., Warmuth, M.K.: Finding a shortest solution for the N x N extension of the 15-puzzle is intractable. In: AAAI, pp. 168–172 (1986)

    Google Scholar 

  22. Ryan, M.R.K.: Graph decomposition for efficient multi-robot path planning. In: IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2003–2008 (2007)

    Google Scholar 

  23. Ryan, M.R.K.: Exploiting subgraph structure in multi-robot path planning. J. Artif. Intell. Res. (JAIR) 31, 497–542 (2008)

    Article  Google Scholar 

  24. Sharon, G., Stern, R., Felner, A., Sturtevant, N.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

    Article  MathSciNet  Google Scholar 

  25. Sharon, G., Stern, R., Goldenberg, M., Felner, A.: The increasing cost tree search for optimal multi-agent pathfinding. Artif. Intell. 195, 470–495 (2013)

    Article  MathSciNet  Google Scholar 

  26. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent path finding. In: AAAI (2012)

    Google Scholar 

  27. Silver, D.: Cooperative pathfinding. In: AIIDE, pp. 117–122 (2005)

    Google Scholar 

  28. Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: AAAI, pp. 173–178 (2010)

    Google Scholar 

  29. Sturtevant, N.R.: Benchmarks for grid-based pathfinding. Comput. Intell. AI Games 4(2), 144–148 (2012)

    Article  Google Scholar 

  30. Surynek, P.: Towards optimal cooperative path planning in hard setups through satisfiability solving. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS (LNAI), vol. 7458, pp. 564–576. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32695-0_50

    Chapter  Google Scholar 

  31. Surynek, P.: An application of pebble motion on graphs to abstract multi-robot path planning. ICTAI 2009, 151–158 (2009)

    Google Scholar 

  32. Surynek, P.: A novel approach to path planning for multiple robots in bi-connected graphs. ICRA 2009, 3613–3619 (2009)

    Google Scholar 

  33. Surynek, P.: An optimization variant of multi-robot path planning is intractable. In: AAAI 2010. AAAI Press (2010)

    Google Scholar 

  34. Surynek, P.: On propositional encodings of cooperative path-finding. In: ICTAI 2012, pp. 524–531. IEEE Computer Society (2012)

    Google Scholar 

  35. Surynek, P.: Compact representations of cooperative path-finding as SAT based on matchings in bipartite graphs. In: ICTAI, pp. 875–882 (2014)

    Google Scholar 

  36. Surynek, P.: Simple direct propositional encoding of cooperative path finding simplified yet more. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI 2014. LNCS (LNAI), vol. 8857, pp. 410–425. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13650-9_36

    Chapter  Google Scholar 

  37. Surynek, P.: Solving abstract cooperative path-finding in densely populated environments. Comput. Intell. 30(2), 402–450 (2014)

    Article  MathSciNet  Google Scholar 

  38. Surynek, P.: Time-expanded graph-based propositional encodings for makespan-optimal solving of cooperative path finding problems. Ann. Math. Artif. Intell. 81(3–4), 329–375 (2017)

    Article  MathSciNet  Google Scholar 

  39. Surynek, P.: Finding optimal solutions to token swapping by conflict-based search and reduction to SAT. In: IEEE 30th International Conference on Tools with Artificial Intelligence, ICTAI 2018, pp. 592–599. IEEE (2018)

    Google Scholar 

  40. Surynek, P.: Lazy modeling of variants of token swapping problem and multi-agent path finding through combination of satisfiability modulo theories and conflict-based search. CoRR abs/1809.05959 (2018). http://arxiv.org/abs/1809.05959

  41. Surynek, P.: Conflict handling framework in generalized multi-agent path finding: advantages and shortcomings of satisfiability modulo approach. In: Proceedings of the 11th International Conference on Agents and Artificial Intelligence, ICAART 2019, vol. 2, pp. 192–203. SciTePress (2019)

    Google Scholar 

  42. Surynek, P., Felner, A., Stern, R., Boyarski, E.: Efficient SAT approach to multi-agent path finding under the sum of costs objective. In: ECAI, pp. 810–818 (2016)

    Google Scholar 

  43. Surynek, P., Felner, A., Stern, R., Boyarski, E.: An empirical comparison of the hardness of multi-agent path finding under the makespan and the sum of costs objectives. In: Symposium on Combinatorial Search (SoCS) (2016)

    Google Scholar 

  44. Thorup, M.: Randomized sorting in O(n log log n) time and linear space using addition, shift, and bit-wise boolean operations. J. Algorithms 42(2), 205–230 (2002)

    Article  MathSciNet  Google Scholar 

  45. Wender, S., Watson, I.: Combining case-based reasoning and reinforcement learning for unit navigation in real-time strategy game AI. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS (LNAI), vol. 8765, pp. 511–525. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11209-1_36

    Chapter  Google Scholar 

  46. de Wilde, B., ter Mors, A., Witteveen, C.: Push and rotate: a complete multi-agent pathfinding algorithm. JAIR 51, 443–492 (2014)

    Article  MathSciNet  Google Scholar 

  47. Wilson, R.M.: Graph puzzles, homotopy, and the alternating group. J. Comb. Theory Ser. B 16(1), 86–96 (1974)

    Article  MathSciNet  Google Scholar 

  48. Yamanaka, K., et al.: Sequentially swapping colored tokens on graphs. In: Poon, S.-H., Rahman, M.S., Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167, pp. 435–447. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53925-6_34

    Chapter  Google Scholar 

  49. Yamanaka, K., et al.: Swapping labeled tokens on graphs. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014 Proceedings. LNCS, vol. 8496, pp. 364–375. Springer, Heidelberg (2014)

    Google Scholar 

  50. Yamanaka, K., et al.: Swapping labeled tokens on graphs. Theor. Comput. Sci. 586, 81–94 (2015)

    Article  MathSciNet  Google Scholar 

  51. Yamanaka, K., et al.: Computational complexity of colored token swapping problem. In: IPSJ SIG Technical Report, vol. 156 (2016)

    Google Scholar 

  52. Yershova, A., LaValle, S.M.: Improving motion-planning algorithms by efficient nearest-neighbor searching. IEEE Trans. Robot. 23(1), 151–157 (2007)

    Article  Google Scholar 

  53. Yu, J., LaValle, S.M.: Planning optimal paths for multiple robots on graphs. ICRA 2013, 3612–3617 (2013)

    Google Scholar 

  54. Yu, J., LaValle, S.M.: Optimal multi-robot path planning on graphs: structure and computational complexity. CoRR abs/1507.03289 (2015)

    Google Scholar 

  55. Yu, J., LaValle, S.M.: Optimal multirobot path planning on graphs: complete algorithms and effective heuristics. IEEE Trans. Robot. 32(5), 1163–1177 (2016)

    Article  Google Scholar 

  56. Yu, J., Rus, D.: Pebble motion on graphs with rotations: efficient feasibility tests and planning algorithms. In: Eleventh Workshop on the Algorithmic Fundations of Robotics (2014)

    Google Scholar 

  57. Zhou, D., Schwager, M.: Virtual rigid bodies for coordinated agile maneuvering of teams of micro aerial vehicles. ICRA 2015, 1737–1742 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Surynek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Surynek, P. (2019). Multi-agent Path Finding with Generalized Conflicts: An Experimental Study. In: van den Herik, J., Rocha, A., Steels, L. (eds) Agents and Artificial Intelligence. ICAART 2019. Lecture Notes in Computer Science(), vol 11978. Springer, Cham. https://doi.org/10.1007/978-3-030-37494-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37494-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37493-8

  • Online ISBN: 978-3-030-37494-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics