Skip to main content

Social Golfer Problem Revisited

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11978))

Abstract

In a golf club, \(n=g*s\) golfers want to play in g groups of s golfers for w weeks. Does there exist a schedule for each golfer to play no more than once with any other golfer? This simple but overwhelmingly challenging problem, which is called social golfer problem (SGP), has received considerable attention in constraint satisfaction problem (CSP) research as a standard benchmark for symmetry breaking. However, constraint satisfaction approach for solving the SGP has stagnated in terms of larger instance over the last decade. In this article, we improve the existing model of the SGP by introducing more constraints that effectively reduce the search space, particularly for the instances of the specific form. And on this basis, we also provide a search space splitting method to solve the SGP in parallel via data-level parallelism. Our implementation of the presented techniques allows us to attain the solutions for eight instances with maximal number of weeks, in which six of them were open instances for constraint satisfaction approach, and two of them are computed for the first time, and super-linear speedups are observed for all the instances solved in parallel. Besides, we survey the extensive literature on solving the SGP, including the best results they have achieved, and analyse the cause of difficulties in solving the SGP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This article follows the naming convention and order of the arguments of constraints in Choco solver.

  2. 2.

    In this article, we follow the Zero-based index.

  3. 3.

    The % (modulo) operator yields the remainder from the division of the first operand by the second.

  4. 4.

    Two Latin squares are mutually orthogonal if, they have the same order n and when superimposed, each of the possible \(n^2\) ordered pairs occur exactly once.

  5. 5.

    An affine plane of order n exists iff a projective plane of order n exists.

  6. 6.

    For instance, \(14=2*7\equiv ~2~(\text {mod}\ 4)\), and the primes in the square-free part are 2 and 7.

References

  1. Aguado, A.: A 10 days solution to the social golfer problem. Math games: Social Golfer problem. MAA Online (2004)

    Google Scholar 

  2. Ball, S.: Finite Geometry and Combinatorial Applications, vol. 82. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  3. Barnier, N., Brisset, P.: Solving the Kirkman’s schoolgirl problem in a few seconds. In: Principles and Practice of Constraint Programming - CP 2002, 8th International Conference, CP 2002, Proceedings, Ithaca, NY, USA, 9–13 September 2002, pp. 477–491 (2002). https://doi.org/10.1007/3-540-46135-3_32

    Google Scholar 

  4. Benadé, J., Burger, A., van Vuuren, J.: The enumeration of k-sets of mutually orthogonal latin squares. In: Proceedings of the 42th Conference of the Operations Research Society of South Africa, Stellenbosch, pp. 40–49 (2013)

    Google Scholar 

  5. Cotta, C., Dotú, I., Fernández, A.J., Hentenryck, P.V.: Scheduling social golfers with memetic evolutionary programming. In: Hybrid Metaheuristics, Third International Workshop, HM 2006, Proceedings, Gran Canaria, Spain, 13–15 October 2006, pp. 150–161 (2006). https://doi.org/10.1007/11890584_12

    Chapter  Google Scholar 

  6. Dechter, R.: Constraint Processing. Elsevier Morgan Kaufmann (2003). http://www.elsevier.com/wps/find/bookdescription.agents/678024/description

    Google Scholar 

  7. Dotú, I., Hentenryck, P.V.: Scheduling social golfers locally. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Second International Conference, CPAIOR 2005, Proceedings, Prague, Czech Republic, 30 May–1 June, 2005, pp. 155–167 (2005). https://doi.org/10.1007/11493853_13

    Chapter  Google Scholar 

  8. Dotú, I., Hentenryck, P.V.: Scheduling social tournaments locally. AI Commun. 20(3), 151–162 (2007). http://content.iospress.com/articles/ai-communications/aic402

  9. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Principles and Practice of Constraint Programming - CP 2001, 7th International Conference, CP 2001, Proceedings, Paphos, Cyprus, 26 November–1 December 2001, pp. 93–107 (2001). https://doi.org/10.1007/3-540-45578-7_7

    Chapter  Google Scholar 

  10. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In: Principles and Practice of Constraint Programming - CP 2001, 7th International Conference, CP 2001, Proceedings, Paphos, Cyprus, 26 November–1 December, 2001, pp. 77–92 (2001). https://doi.org/10.1007/3-540-45578-7_6

    Chapter  Google Scholar 

  11. Gent, I.P., Petrie, K.E., Puget, J.: Symmetry in constraint programming. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, chap. 10, pp. 329–376. Elsevier (2006). https://doi.org/10.1016/S1574-6526(06)80014-3

    Chapter  Google Scholar 

  12. Gomes, C.P., Selman, B., Crato, N., Kautz, H.A.: Heavy-tailed phenomena insatisfiability and constraint satisfaction problems. J. Autom. Reasoning 24(1/2), 67–100 (2000). https://doi.org/10.1023/A:1006314320276

    Article  MathSciNet  Google Scholar 

  13. Harvey, W.: CSPLib problem 010: Social golfers problem (2002). http://www.csplib.org/Problems/prob010. Accessed 28 Apr 2019

  14. Harvey, W., Winterer, T.J.: Solving the MOLR and social golfers problems. In: Principles and Practice of Constraint Programming - CP 2005, 11th International Conference, CP 2005, Proceedings, Sitges, Spain, 1–5 October 2005, pp. 286–300 (2005). https://doi.org/10.1007/11564751_23

    Chapter  Google Scholar 

  15. Hennessy, J.L., Patterson, D.A.: Computer Architecture - A Quantitative Approach, 5th edn. Morgan Kaufmann, Burlington (2012)

    MATH  Google Scholar 

  16. Kirkman, T.P.: Note on an unanswered prize question. Cambridge Dublin Math. J. 5, 255–262 (1850)

    Google Scholar 

  17. Lam, C.W., Thiel, L., Swiercz, S.: The non-existence of finite projective planes of order 10. Can. J. Math. 41(6), 1117–1123 (1989)

    Article  Google Scholar 

  18. Law, Y.C., Lee, J.H.: Global constraints for integer and set value precedence. In: Principles and Practice of Constraint Programming - CP 2004, 10th International Conference, CP 2004, Proceedings, Toronto, Canada, 27 September–1 October 2004, pp. 362–376 (2004). https://doi.org/10.1007/978-3-540-30201-8_28

    Chapter  Google Scholar 

  19. Lecoutre, C.: Constraint Networks: Techniques and Algorithms. Wiley, Hoboken (2009)

    Book  Google Scholar 

  20. Liu., K., Löffler., S., Hofstedt., P.: Solving the social golfers problems by constraint programming in sequential and parallel. In: Proceedings of the 11th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, pp. 29–39. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007252300290039

  21. Liu, K., Löffler, S., Hofstedt, P.: Solving the traveling tournament problem with predefined venues by parallel constraint programming. In: Mining Intelligence and Knowledge Exploration - 6th International Conference, MIKE 2018, Proceedings, Cluj-Napoca, Romania, 20–22 December 2018, pp. 64–79 (2018). https://doi.org/10.1007/978-3-030-05918-7_7

    Chapter  Google Scholar 

  22. McKay, B.D., Meynert, A., Myrvold, W.: Small latin squares, quasigroups, and loops. J. Comb. Des. 15(2), 98–119 (2007)

    Article  MathSciNet  Google Scholar 

  23. Miguel, I.: CSPLib problem 038: steel mill slab design (2012). http://www.csplib.org/Problems/prob010. Accessed 28 Apr 2019

  24. Palmieri, A., Régin, J., Schaus, P.: Parallel strategies selection. In: Principles and Practice of Constraint Programming - 22nd International Conference, CP 2016, Proceedings, Toulouse, France, 5–9 September 2016, pp. 388–404 (2016). https://doi.org/10.1007/978-3-319-44953-1_25

    Google Scholar 

  25. Parker, E.T.: Construction of some sets of mutually orthogonal latin squares. Proc. Am. Math. Soc. 10(6), 946–949 (1959)

    Article  MathSciNet  Google Scholar 

  26. Prestwich, S.: CSPLib problem 028: balanced incomplete block designs (2001). http://www.csplib.org/Problems/prob010. Accessed 28 Apr 2019

  27. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC - LS2N CNRS UMR 6241, COSLING S.A.S. (2017). http://www.choco-solver.org

  28. Puget, J.: Symmetry breaking revisited. Constraints 10(1), 23–46 (2005). https://doi.org/10.1007/s10601-004-5306-8

    Article  MathSciNet  MATH  Google Scholar 

  29. Rees, R.S., Wallis, W.D.: Kirkman triple systems and their generalizations: a survey. In: Wallis, W.D. (ed.) Designs 2002. MIA, vol. 563, pp. 317–368. Springer, Boston, MA (2003). https://doi.org/10.1007/978-1-4613-0245-2_13

    Chapter  Google Scholar 

  30. Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_45

    Chapter  Google Scholar 

  31. Régin, J., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Proceedings, Uppsala, Sweden, 16–20 September 2013, pp. 596–610 (2013). https://doi.org/10.1007/978-3-642-40627-0_45

    Google Scholar 

  32. de Resmini, M.J.: There exist at least three non-isomorphic s (2, 4, 28)’s. J. Geom. 16(1), 148–151 (1981)

    Article  MathSciNet  Google Scholar 

  33. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming, Foundations of Artificial Intelligence, vol. 2. Elsevier (2006). http://www.sciencedirect.com/science/bookseries/15746526/2

  34. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with gecode. Gecode Team (2017). https://www.gecode.org/

  35. Sellmann, M., Harvey, W.: Heuristic constraint propagation-using local search for incomplete pruning and domain filtering of redundant constraints for the social golfer problem. In: CPAIOR 2002, Citeseer (2002)

    Google Scholar 

  36. Smith, B.M.: Modelling. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, chap. 11, pp. 377–406. Elsevier (2006). https://doi.org/10.1016/S1574-6526(06)80015-5

    Chapter  Google Scholar 

  37. Smith, B.M.: Reducing symmetry in a combinatorial design problem. In: CPAIOR 2001, pp. 351–359, April 2001. http://www.icparc.ic.ac.uk/cpAIOR01

  38. Triska, M., Musliu, N.: An effective greedy heuristic for the social golfer problem. Ann. Oper. Res. 194(1), 413–425 (2012). https://doi.org/10.1007/s10479-011-0866-7

    Article  MathSciNet  MATH  Google Scholar 

  39. Triska, M., Musliu, N.: An improved SAT formulation for the social golferproblem. Ann. Oper. Res. 194(1), 427–438 (2012). https://doi.org/10.1007/s10479-010-0702-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Liu .

Editor information

Editors and Affiliations

Appendices

A Appendix

The Solutions

See Tables 11, 12, 13, 14, 15, 16 and 17.

Table 11. The solution for 6-3-8 transformed from the solution shown in Table 6.
Table 12. A new non-isomorphic solution for the 6-3-8 instance.
Table 13. The solution for 6-4-7 transformed from the solution shown in Table 7.
Table 14. A new non-isomorphic solution for the 7-3-10 instance.
Table 15. A new non-isomorphic solution for the 7-3-10 instance.
Table 16. A new non-isomorphic solution for the 7-3-10 instance.
Table 17. A solution of 8-8-9 expressed by groups.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, K., Löffler, S., Hofstedt, P. (2019). Social Golfer Problem Revisited. In: van den Herik, J., Rocha, A., Steels, L. (eds) Agents and Artificial Intelligence. ICAART 2019. Lecture Notes in Computer Science(), vol 11978. Springer, Cham. https://doi.org/10.1007/978-3-030-37494-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37494-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37493-8

  • Online ISBN: 978-3-030-37494-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics