Skip to main content

Autumn, Development and Consolidation of Sea Ice

  • Chapter
  • First Online:
Arctic Sea Ice Ecology

Abstract

This chapter describes the period of development of new ice during autumn freeze-up, different ice types, and development of the brine channels (2.1). Optical properties of young and developing sea ice are described in terms of the transition from open water to bare sea ice, that later can be covered by snow (2.2). The incorporation and scavenging of ice algae, bacteria and meiofauna from the water column during ice growth and freeze-up are then described (2.3). Development of platelet ice, a prominent under-ice feature in Antarctica and recently observed in the Arctic, is described (2.4). The final section describes frost flowers and brine skim development, and the dynamics of the bacteria communities in the frost flowers and brine skim on top of newly formed sea ice (2.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aslam, S. N., Graham, J., Underwood, C., Kaartokallio, H., Norman, L., Autio, R., Fischer, M., Kousa, H., Dieckmann, G. S., & Thomas, D. N. (2012). Dissolved extracellular polymeric substances (dEPS) dynamics and bacterial growth during sea ice formation in an ice tank study. Polar Biology, 35, 661–676. https://doi.org/10.1007/s00300-011-1112-0.

    Article  Google Scholar 

  • Barber, D. G., Ehn, J. K., Pucko, M., Rysgaard, S., Deming, J. W., Bowman, J. S., Papakyriakou, T., Galley, R. J., & Søgaard, D. H. (2014). Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type. Journal of Geophysical Research, Atmospheres, 119, 11593–11612. https://doi.org/10.1002/2014JD021736.

    Article  Google Scholar 

  • Belzile, C. L., Johannesen, S. C., Gosselin, M., Demers, S., & Miller, W. L. (2000). Ultraviolet attenuation by dissolved and particulate constituents of first-year ice during late spring in an Arctic polynya. Limnology and Oceanography, 45, 1265–1273. https://doi.org/10.4319/lo.2000.45.6.1265.

    Article  Google Scholar 

  • Bluhm, B. A., Gradinger, R. R., & Schnack-Schiel, S. B. (2010). Sea ice meio- and macrofauna. In D. Thomas & G. Dieckmann (Eds.), Sea ice (pp. 357–394). Oxford: Wiley-Blackwell.

    Google Scholar 

  • Carey, A. G. J., & Montagna, P. A. (1982). Arctic sea ice faunal assemblage: First approach to description and source of the underice meiofauna. Marine Ecology Progress Series, 8, 1–8. https://doi.org/10.3354/meps008001.

    Article  Google Scholar 

  • Collins, R. E., Carpenter, S. D., & Deming, J. W. (2008). Spatial heterogeneity and temporal dynamics of particles and pEPS in arctic winter sea ice. Journal of Marine Systems, 74, 902–917. https://doi.org/10.1016/j.jmarsys.2007.09.005.

    Article  Google Scholar 

  • Cox, G. F. N., & Weeks, W. F. (1983). Equations for determining the gas and brine volumes in sea-ice samples. Journal of Glaciology, 29, 306–316. https://doi.org/10.3189/S0022143000008364.

    Article  Google Scholar 

  • Deming, J. W., & Collins, R. E. (2017). Sea ice as a habitat for Bacteria, Archaea and viruses. In: D. N. Thomas (Ed.), Sea ice (3rd ed., pp. 326–351). Oxford: Wiley Blackwell, 652 pp.

    Google Scholar 

  • Domine, F., Taillandier, A. S., Simpson, W. R., & Severin, K. (2005). Specific surface area, density and microstructure of frost flowers. Geophysical Research Letters, 32, L13502. https://doi.org/10.1029/2005GL023245.

    Article  Google Scholar 

  • Douglas, T. A., Sturm, M., Simpson, W. R., Brooks, S., Lindberg, S. E., & Perovich, D. K. (2005). Elevated mercury measured in snow and frost flowers near Arctic sea ice leads. Geophysical Research Letters, 32. https://doi.org/10.1029/2004GL022132.

  • Douglas, T. A., Domine, F., Barret, M., Anastasio, C., Beine, H. J., Bottenheim, J., Grannas, A., Houdier, S., Netcheva, S., Rowland, G., Staebler, R., & Steffen, A. (2012). Frost flowers growing in the Arctic ocean-atmosphere-sea ice-snow interface: 1. Chemical composition. Journal of Geophysical Research, 117. https://doi.org/10.1029/2011JD016460.

  • Eicken, H. (2003). From the microscopic to the macroscopic to the regional scale, growth, microstructure and properties of sea ice. In D. N. Thomas & G. S. Dieckmann (Eds.), Sea Ice: An introduction to its physics, chemistry, biology and geology (1st ed., pp. 22–181). Oxford: Wiley Blackwell.

    Chapter  Google Scholar 

  • Eicken, H., & Lange, M. A. (1989). Development and properties of sea ice in the coastal regime of the southeastern Weddell Sea. Journal of Geophysical Research-Ocean, 94, 8193–8206. https://doi.org/10.1029/JC094iC06p08193.

    Article  Google Scholar 

  • Ewert, M., & Deming, J. W. (2013). Sea ice microorganisms: Environmental constraints and extracellular responses. Biology, 2, 603–628. https://doi.org/10.3390/biology2020603.

    Article  Google Scholar 

  • Fritsen, C. H., Ackley, S. F., Kremer, J. N., & Sullivan, C. W. (1998). Flood-freeze cycles and microalgal dynamics in Antarctic pack ice. In M. P. Lizotte & K. R. Arrigo (Eds.), Antarctic sea ice: Biological processes, interactions and variability (Antarctic research series) (Vol. 73, pp. 1–21). Washington, DC: AGU. https://doi.org/10.1029/AR073.

    Chapter  Google Scholar 

  • Garrison, D. L., Ackley, S. F., & Buck, K. R. (1983). A physical mechanism for establishing algal populations in frazil ice. Nature, 306, 363–365. https://doi.org/10.1038/306363a0.

    Article  Google Scholar 

  • Gradinger, R., & Ikävalko, J. (1998). Organism incorporation into newly forming Arctic sea ice in the Greenland Sea. Journal of Plankton Research, 20, 871–886. https://doi.org/10.1093/plankt/20.5.871.

    Article  Google Scholar 

  • Haas, C., Pfaffling, A., Hendricks, S., Rabenstein, L., Etienne, J.-L., & Rigor, I. (2008). Reduced ice thickness in Arctic Transpolar Drift favores rapid ice retreat. Geophysical Research Letters, 35, L17501. https://doi.org/10.1029/2008GL034457.

    Article  Google Scholar 

  • Isleifson, D., Galley, R. J., Barber, D. G., Landy, J. C., Komarov, A. S., & Shafai, L. (2014). A study on the C-band polarimetric scattering and physical characteristics of frost flowers on experimental sea ice. IEEE Transactions on Geoscience and Remote Sensing, 52, 1787–1798. https://doi.org/10.1109/TGRS.2013.2255060.

    Article  Google Scholar 

  • Juhl, A. R., Krembs, C., & Meiners, K. M. (2011). Seasonal development and differential retention of ice algae and other organic fractions in first-year Arctic sea ice. Marine Ecology Progress Series, 436, 1–16. https://doi.org/10.3354/meps09277.

    Article  Google Scholar 

  • Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J., Rankin, A. M., Roscoe, H. K., Hollwedel, J., Wagner, T., & Jacobi, H.-W. (2004). Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry. Geophysical Research Letters, 31. https://doi.org/10.1029/2004GL020655.

  • Kirillov, S., Dmitrenko, I., Rysgaard, S., Babb, D., Ehn, J., Bendtsen, J., Boone, W., Barber, D., & Geilfus, N. (2018). The inferred formation of a subice platelet layer below the multiyear landfast sea ice in the Wandel Sea (NE Greenland) induced by meltwater drainage. Journal of Geophysical Research, 123, 3489–3506. https://doi.org/10.1029/2017JC013672.

  • Langhorne, P. J., Hughes, K. G., Gough, A. J., Smith, I. J., Williams, M. J. M., Robinson, N. J., Stevens, C. L., Rack, W., Price, D., Leonard, G. H., Mahoney, A. R., & Haskell, T. G. (2015). Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice heat flux. Geophysical Research Letters, 42, 5442–5451. https://doi.org/10.1002/2015GL064508.

    Article  Google Scholar 

  • Leu, E., Mundy, C. J., Assmy, P., Campbell, K., Gabrielsen, T. M., Gosselin, M., Juul-Pedersen, T., & Gradinger, R. (2015). Arctic spring awakening – Steering principles behind the phenology of vernal ice algal blooms. Progress in Oceanography, 139, 151–170. https://doi.org/10.1016/j.pocean.2015.07.012.

    Article  Google Scholar 

  • Martin, S., Drucker, R., & Fort, M. (1995). A laboratory study of frost flower growth on the surface of young sea ice. Journal of Geophysical Research, 100, 7027–7036. https://doi.org/10.1029/94JC03243.

    Article  Google Scholar 

  • Meiners, K. M., & Michel, C. (2017). Dynamics of nutrients, dissolved organic matter and exopolymers in sea ice. In D. N. Thomas (Ed.), Sea ice (3rd ed., pp. 415–432). Oxford: Wiley Blackwell, 652 pp. https://doi.org/10.1002/9781118778371.ch17

  • Meiners, K. M., Krembs, C., & Gradinger, R. (2008). Exopolymer particles: Microbial hotspots of enhanced bacterial activity in Arctic fast ice (Chukchi Sea). Aquatic Microbial Ecology, 52, 195–207. https://doi.org/10.3354/ame01214.

    Article  Google Scholar 

  • Nicolaus, M., Gerland, S., Hudson, S. R., Hanson, S., Haapala, J., & Perovich, D. K. (2010). Seasonality of spectral albedo and transmittance as observed in the Arctic Transpolar Drift in 2007. Journal of Geophysical Research, 115. https://doi.org/10.1029/2009JC006074.

  • Norman, L., Thomas, D. N., Stedmon, C. A., Granskog, M. A., Papadimitriou, Krapp, R. H., Meiners, K. M., Lannuzel, D., Merwe, P. D., & Dieckmann, G. S. (2011). The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice. Deep Sea Research Part II: Topical Studies in Oceanography, 58, 1075–1092. https://doi.org/10.1016/j.dsr2.2010.10.030.

    Article  Google Scholar 

  • Papadimitriou, S., Kennedy, H., Kattner, G., Dieckmann, G. S., & Thomas, D. N. (2004). Experimental evidence for carbonate precipitation and CO2 degassing during sea ice formation. Geochimica et Cosmochimica Acta, 68, 1749–1761. https://doi.org/10.1016/j.gca.2003.07.004.

    Article  Google Scholar 

  • Perovich, D. K. (1991). Seasonal changes in sea ice optical properties during fall freeze-up. Cold Regions Science and Technology, 18, 261–273. https://doi.org/10.1016/0165-232x(91)90041-E.

    Article  Google Scholar 

  • Perovich, D. K., & Richter-Menge, J. A. (1994). Surface characteristics of lead ice. Journal of Geophysical Research, 99, 16341–16350. https://doi.org/10.1029/94JC01194.

    Article  Google Scholar 

  • Petrich, C., & Eicken, H. (2017). Overview of sea ice growth and properties. In D. N. Thomas (Ed.), Sea ice (3rd ed., pp. 1–41). Oxford: Wiley Blackwell, 652 pp. https://doi.org/10.1002/9781118778371.ch1.

  • Reimnitz, E., McCormick, M., McDougall, K., & Brouwers, E. (1993). Sediment export by ice rafting from a coastal polynya, Arctic Alaska, U.S. Arctic Alpine Research, 25, 83–98. https://doi.org/10.2307/1551544.

    Article  Google Scholar 

  • Riedel, A., Michel, C., Gosselin, M., & LeBlanc, B. (2007). Enrichment of nutrients, exopolymeric substances and microorganisms in newly formed sea ice on the Mackenzie Shelf. Marine Ecology Progress Series, 342, 55–67. https://doi.org/10.3354/meps342055.

    Article  Google Scholar 

  • Rysgaard, S., Glud, R. N., Lennert, K., Cooper, M., Halden, N., Leakey, R. J. G., Hawthorne, F. C., & Barber, D. (2012). Ikaite crystals in melting sea ice – Implications for pCO2 and pH levels in Arctic surface waters. The Cryosphere, 6, 901–908. https://doi.org/10.5194/tc-6-901-2012.

    Article  Google Scholar 

  • Søgaard, D. H., Kristensen, M., Rysgaard, S., Glud, R. N., Hansen, P. J., & Hilligsøe, K. M. (2010). Autotrophic and heterotrophic activity in Arctic first-year sea ice: Seasonal study from Malene Bight, SW Greenland. Marine Ecology Progress Series, 419, 31–45. https://doi.org/10.3354/meps08845.

    Article  Google Scholar 

  • Søgaard, D. H. (2014). Biological activity and calcium carbonate dynamics in Greenland sea ice – Implication for the inorganic carbon cycle. PhD thesis. Greenland Climate Research Centre and Department of Biology. University of Southern Denmark, Greenland Institute of Natural Resources, 148p

    Google Scholar 

  • Søgaard, D. H., Deming, J. W., Meire, L., & Rysgaard, S. (2019). Effects of microbial processes and CaCO3 dynamics on inorganic carbon cycling in snow-covered Arctic winter sea ice. Marine Ecology Progress Series. https://doi.org/10.3354/meps12868.

  • Spindler, M. (1994). Notes on the biology of sea ice in the Arctic and Antarctic. Polar Biology, 14, 319–324. https://doi.org/10.1007/BF00238447.

    Article  Google Scholar 

  • Stedmon, C. A., Thomas, D. N., Granskog, M., Kaartokallio, H., Papadimitriou, S., & Kousa, H. (2007). Characteristics of dissolved organic matter in Baltic coastal sea ice: Allochthonous or autochthonous origins? Environmental Science and Technology, 41, 7273–7279. https://doi.org/10.1021/es071210f.

  • Style, R. W., & Worster, M. G. (2009). Frost flower formation on sea ice and lake ice. Geophysical Research Letters, 36. https://doi.org/10.1029/2009GL037304.

  • Thomas, D. N., Kattner, G., Engbrodt, R., Gianelli, V., Kennedy, H., Haas, C., & Dieckmann, G. (2001). Dissolved organic matter in Antarctic sea ice. Annals of Glaciology, 33, 297–303. https://doi.org/10.3189/172756401781818338.

    Article  Google Scholar 

  • Timco, G. W., & Weeks, W. F. (2010). A review of the engineering properties of sea ice. Cold Regions Science and Technology, 60, 107–129. https://doi.org/10.1016/j.coldregions.2009.10.003.

    Article  Google Scholar 

  • Underwood, G. J. C., Fietz, S., Papadimitriou, S., Thomas, D. N., & Dieckmann, G. S. (2010). Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic sea ice. Marine Ecology Progress Series, 404, 1–19. https://doi.org/10.3354/meps08557.

    Article  Google Scholar 

  • Vancoppenolle, M., Meiners, K. M., Michel, C., Bopp, L., Brabant, F., Carnat, G., Delille, B., Lannuzel, D., Madec, G., Moreau, S., Tison, J.-L., & Merwe, P. V. D. (2013). Role of sea ice in global biogeochemical cycles: Emerging views and challenges. Quaternary Science Reviews, 79, 207–230. https://doi.org/10.1016/j.quascirev.2013.04.011.

    Article  Google Scholar 

  • Weeks, W. F. (2010). On sea ice. Fairbanks: University of Alaska Press, 664 pp.

    Google Scholar 

  • Weeks, W. F., & Ackley, S. F. (1982). The growth, structure and properties of sea ice, CRREL monograph. 117 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lund-Hansen, L.C., Søgaard, D.H., Sorrell, B.K., Gradinger, R., Meiners, K.M. (2020). Autumn, Development and Consolidation of Sea Ice. In: Arctic Sea Ice Ecology. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-37472-3_2

Download citation

Publish with us

Policies and ethics